Advertisement for orthosearch.org.uk
Results 1 - 20 of 7738
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 32 - 32
14 Nov 2024
Mungalpara N Kim S Baker H Lee C Shakya A Chen K Athiviraham A Koh J Elhassan B Maassen NH Amirouche F
Full Access

Introduction. Supraspinatus and infraspinatus tears (Massive Rotator Cuff Tear- MRCT) cause compensatory activation of the teres minor (TM) and subscapularis (SubS) to maintain humeral head alignment. This study measures force changes in TM and SubS using a dynamic shoulder testing setup. We hypothesize that combining superior capsule reconstruction (SCR) and lower trapezius tendon (LTT) transfer will correct rotator cuff forces. Methods. Eight fresh-frozen human shoulder specimens from donors aged 55-75 (mean = 63.75 years), balanced for gender, averaging 219.5 lbs, were used. Rotator cuff and deltoid tendons were connected to force sensors through a pulley system, with the deltoid linked to a servohydraulic motor for dynamic force measurement. The system allowed unrestricted humeral abduction from 0 to 90 degrees. Results. Teres Minor (TM):. -. Control: 7.43 N (SD = 1.66). -. SS tear: 5.46 N (SD = 1.45). -. MRCT: 3.94 N (SD = 1.43). -. LTT post-MRCT: 5.85 N (SD = 1.13). -. SCR post-MRCT: 4.68 N (SD = 0.71). -. Combined LTT+SCR: 6.43 N (SD = 1.24). -. TM force reduction: 26.51% post-SS tear, 46.97% from intact to MRCT, 63.20% increase with LTT+SCR. Subscapularis (SubS):. -. Control: -0.73 N (SD = 0.43). -. SS tear: -0.46 N (SD = 0.36), 36.99% increase. -. MRCT: 0.96 N (SD = 0.47), 31.51% increase. -. LTT post-MRCT: -0.32 N (SD = 0.47), 66.67% reduction. -. SCR post-MRCT: -0.28 N (SD = 0.16), 70.83% reduction. -. Combined LTT+SCR: -0.66 N (SD = 0.32), 31.25% reduction. Non-parametric Friedman's ANOVA showed overall statistical significance for TM (P = 1.083×10. -6. ) and SubS (P = 4.77×10. -4. ). Conclusion. The cadaveric model assesses rotator cuff compensations, showing significant TM force reductions following rotator cuff tears and improvements with LTT and SCR, particularly when combined. SubS exhibited negative force during normal abduction but compensated during MRCT, returning to normal values post-LTT and SCR


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 64 - 64
14 Nov 2024
Hudson P Federer S Dunne M Pring C Smith N
Full Access

Introduction. Weight is a modifiable risk factor for osteoarthritis (OA) progression. Despite the emphasis on weight loss, data quantifying the changes seen in joint biomechanics are limited. Bariatric surgery patients experience rapid weight loss. This provides a suitable population to study changes in joint forces and function as weight changes. Method. 10 female patients undergoing gastric bypass or sleeve gastrectomy completed 3D walking gait analysis at a self-selected pace, pre- and 6 months post-surgery. Lower limb and torso kinematic data for 10 walking trials were collected using a Vicon motion capture system and kinetics using a Kistler force plate. An inverse kinematic model in Visual 3D allowed for no translation of the hip joint centre. 6 degrees of freedom were allowed at other joints. Data were analysed using JASP with a paired samples t-test. Result. On average participants lost 28.8±7.60kg. No significant changes were observed in standing knee and hip joint angles. Walking velocity increased from 1.10±0.11 ms. -1. to 1.23±0.17 ms. -1. (t(9)=-3.060, p = 0.014) with no change in step time but a mean increase in stride length of 0.12m (SE: 0.026m; t(9)=-4.476, p = 0.002). A significant decrease of 21.5±4.2% in peak vertical ground reaction forces was observed (t(9)=12.863, p <0.001). Stride width significantly decreased by 0.04m (SE: 0.010m; t(9)=4.316, p = 0.002) along with a decrease in lateral impulse of 21.2Ns (SE: 6.977Ns; t(7), p = 0.019), but no significant difference in knee joint angles were observed. Double limb support time also significantly reduced by 0.02s (SE: 0.006s; t(9) = 3.639, p=0.005). Conclusion. The reduction in stance width and lateral impulse suggests a more sagittal compass-gait walk is being achieved. This would reduce valgus moments on the knee reducing loading in the medial compartment. The reduction in peak ground reaction force would reduce knee contact forces and again potentially slow OA progression


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 80 - 80
14 Nov 2024
Møller S
Full Access

Introduction. Plantar heel pain, or plantar fasciopathy (PF), is a common musculoskeletal complaint, affecting 39% of lower-extremity tendinopathies in general practice. Conservative management is recommended as the first-line treatment, yet many patients continue to experience symptoms even after ten years. There is a significant lack of high-quality evidence for the effectiveness of various treatments, highlighting the need for more research. Minimally invasive surgical options, such as endoscopic plantar fascia release and radiofrequency microtenotomy, have shown promise in reducing pain and improving outcomes. This systematic review aims to evaluate the effectiveness of these minimally invasive surgical treatments compared to non-surgical options in managing PF. Method. The systematic review, registered on PROSPERO (CRD42024490498) and adhering to PRISMA guidelines, searched databases including PubMed, Embase, Cochrane, and others for studies from January 1991 to May 2024. Keywords included plantar fasciitis, plantar fasciopathy, and heel pain. Limited to human trials, the search strategy was refined with an information specialist and found no protocol duplicates. Result. The systematic review identified eight studies involving 495 patients (56.2% women, average age 46.5 years). The studies compared various treatments, including endoscopic plantar fascia release (EPF), mini-scalpel needle (MSN) treatment, ultrasound-guided pulsed radiofrequency (UG-PRF), and needle electrolysis (NE), to non-surgical interventions and corticosteroid injections (CSI). Primary outcomes focused on pain reduction, with some needle treatments showing superior results (between-group diffence). No severe adverse events were reported. Conclusion. In conclusion, plantar fasciopathy (PF) remains a prevalent and challenging condition, that can be resistant to conservative treatments. This systematic review highlights the potential of minimally invasive surgical options, such as endoscopic plantar fascia release and needle treatments, in reducing pain and improving functional outcomes. Despite some needle treatments showing superior results, the overall lack of high-quality evidence underscores the need for further research to establish the most effective management strategies for PF


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 55 - 55
14 Nov 2024
Vinco G Ley C Dixon P Grimm B
Full Access

Introduction. The ability to walk over various surfaces such as cobblestones, slopes or stairs is a very patient centric and clinically meaningful mobility outcome. Current wearable sensors only measure step counts or walking speed regardless of such context relevant for assessing gait function. This study aims to improve deep learning (DL) models to classify surfaces of walking by altering and comparing model features and sensor configurations. Method. Using a public dataset, signals from 6 IMUs (Movella DOT) worn on various body locations (trunk, wrist, right/left thigh, right/left shank) of 30 subjects walking on 9 surfaces were analyzed (flat ground, ramps (up/down), stairs (up/down), cobblestones (irregular), grass (soft), banked (left/right)). Two variations of a CNN Bi-directional LSTM model, with different Batch Normalization layer placement (beginning vs end) as well as data reduction to individual sensors (versus combined) were explored and model performance compared in-between and with previous models using F1 scores. Result. The Bi-LSTM architecture improved performance over previous models, especially for subject-wise data splitting and when combining the 6 sensor locations (e.g. F1=0.94 versus 0.77). Placement of the Batch Normalization layer at the beginning, prior to the convolutional layer, enhanced model understanding of participant gait variations across surfaces. Single sensor performance was best on the right shank (F1=0.88). Conclusion. Walking surface detection using wearable IMUs and DL models shows promise for clinically relevant real-world applications, achieving high F1 levels (>0.9) even for subject-wise data splitting enhancing the model applicability in real-world scenarios. Normalization techniques, such as Batch Normalization, seem crucial for optimizing model performance across diverse participant data. Also single-sensor set-ups can give acceptable performance, in particular for specific surface types of potentially high clinical relevance (e.g. stairs, ramps), offering practical and cost-effective solutions with high usability. Future research will focus on collecting ground-truth labeled data to investigate system performance in real-world settings


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 6 - 6
14 Nov 2024
Karjalainen L Lähdesmäki M Ylitalo A Eskelinen A Mattila VM Repo J
Full Access

Background. Cephalomedullary nails are widely used for fixation of unstable pertrochanteric fractures. In 2018, the Depuy Synthes Trochanteric Fixation Nail - Advanced (TFNA) implant was introduced at a level I academic trauma center. Thereafter, the TFNA swiftly replaced the older implant models used at the time. Subsequently, clinical concerns were raised about the use of the TFNA due to reports of nail breakage. The purpose of this study was to investigate whether the concerns raised about the performance of the TFNA were valid and to assess long-term outcomes. Methods. The data consisted of 2397 patients who had undergone a proximal femoral hip fracture procedure between 2014 and 2020. Data were handpicked from patient records. TFNA was compared with TFN, PFNA, Gamma3, and Intertan regarding nail breakage, breakage time and long-term outcomes. Results. After exclusion a total of 23/1667 (1.4%) nails broke during the follow-up period. The TFNA broke the most often with 15 cases (2.0%), followed by the Gamma3 with five cases (1.1 %) and the PFNA with three cases (1.3%). Overall, the mean (SD) nail breakage time was 233 (147.8) days. However, for the TFNA, PFNA, and Gamma3, the mean breakage times were 176.8 days (109.9), 419 days (108.6), and 291.8 (153.4), respectively. In cox regression analysis we observed significant reduction in nail breakage when using PFNA with adjusted hazard risk of 0.081 [95% Ci, 0.011-0.576, p=0.011]. Conclusions. In our data, the TFNA had a slightly higher risk for nail breakage when compared to the PFNA and the Gamma3, with a risk difference of 0.7% and 0.9%, respectively. On average, the TFNA broke nearly four months earlier than the Gamma3 and more than eight months earlier than the PFNA. It should be noted, however, that implant breakage is a relatively infrequent complication


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 106 - 106
14 Nov 2024
Bliddal H Beier J Hartkopp A Conaghan P Henriksen M
Full Access

Introduction. Polyacrylamide hydrogel (iPAAG. 1. ), is CE marked for treating symptomatic knee osteoarthritis (OA), meeting the need for an effective, long-lasting, and safe non-surgical option. This study evaluates the efficacy and safety of a single 6 ml intra-articular injection of iPAAG in participants with moderate to severe knee OA over a 5-year post-treatment period, presenting data from the 4-year follow up. Method. This prospective multicentre study (3 sites in Denmark) involved 49 participants (31 females) with an average age of 70 (range 44 – 86 years). They received a single 6 mL iPAAG injection. All participants provided informed consent and re-consented to continue after 1 year. The study followed GCP principles and was approved by Danish health authorities and local Health Research Ethics committees. Twenty-seven participants completed the 4-year follow-up. The study evaluated WOMAC pain, stiffness, function, and Patient Global Assessment (PGA) of disease impact. Changes from baseline were analysed using a mixed model for repeated measurement (MMRM). Sensitivity analyses were applied on the extension data, where the MMRM analysis was repeated only including patients in the extension phase and an ANCOVA model was used, replacing missing values at 4-years with baseline values (BOCF). Results. The planned MMRM analysis (n=49) revealed a statistically significant decrease in WOMAC pain subscale scores (-22.0; 95%CI: -29.5; -14.4) from baseline to 4-years. Analysis of the extension phase (n=27) showed similar results (-21.8; 95%CI: -29.0; -14.6) compared to the initial analysis. Furthermore, BOCF analysis indicated a statistically significant reduction in WOMAC pain subscale scores from baseline (-13.0 units). Four new adverse events were reported between the 3-year and 4-year visits; none were related to treatment. Conclusions. This study shows that single injections of 6 ml intra-articular iPAAG were well tolerated and continued to provide clinically important effectiveness at 4-years after treatment. Acknowledgements. The study was sponsored by Contura International A/S


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 102 - 102
14 Nov 2024
Strack D Mesbah M Rayudu NM Baum T Kirschke J Subburaj K
Full Access

Introduction. Functional Spine Units (FSUs) play a vital role in understanding biomechanical characteristics of the spine, particularly bone fracture risk assessment. While established models focus on simulating axial compression of individual bones to assess fracture load, recent models underscore the importance of understanding fracture load within FSUs, offering a better representation of physiological conditions. Despite the limited number of FSU fracture studies, they predominantly rely on a linear material model with an annulus fibrosus Young's modulus set at 500 MPa, significantly higher than stiffness values (ca. 4 MPa) utilized in other FSU and spine section biomechanical models. Thus, this study aims to study the effect of varying annulus fibrosus stiffness on FSU fracture load, aiming to identify physiologically relevant biomechanical parameters. Method. Subject-specific geometry and material properties of bones were derived from computed tomography (CT) image data of five human cadaveric FSU specimens. The annulus fibrosus and nucleus pulposus were manually recreated and assigned linear elastic material properties. By subjecting the model to axial compression, the fracture load of the FSU was deduced from the peak of the force-displacement graph. To explore the effect of stiffness of the annulus fibrosus on simulated fracture load, we conducted a parameter study, varying stiffness values from the high 500 MPa to a more physiologically relevant 25 MPa, aiming to approximate values applied in FSU kinematic models while achieving bone fracture. Result. Significant reductions in fracture load were observed, ranging from 23% to 46%, as annulus stiffness decreased from 500MPa to 25MPa. Additionally, a discernible, gradual decline in fracture load was observed with a decrease in stiffness values. Conclusion. The stiffness of the annulus fibrosus significantly influences the simulated fracture load of an FSU. Future investigations should prioritize biomechanically accurate modeling of the intervertebral disc, ensuring alignment with experimental findings regarding FSU fracture load while maintaining biomechanical fidelity


Bone & Joint Research
Vol. 13, Issue 11 | Pages 647 - 658
12 Nov 2024
Li K Zhang Q

Aims

The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures.

Methods

A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively.


Aims

For rare cases when a tumour infiltrates into the hip joint, extra-articular resection is required to obtain a safe margin. Endoprosthetic reconstruction following tumour resection can effectively ensure local control and improve postoperative function. However, maximizing bone preservation without compromising surgical margin remains a challenge for surgeons due to the complexity of the procedure. The purpose of the current study was to report clinical outcomes of patients who underwent extra-articular resection of the hip joint using a custom-made osteotomy guide and 3D-printed endoprosthesis.

Methods

We reviewed 15 patients over a five-year period (January 2017 to December 2022) who had undergone extra-articular resection of the hip joint due to malignant tumour using a custom-made osteotomy guide and 3D-printed endoprosthesis. Each of the 15 patients had a single lesion, with six originating from the acetabulum side and nine from the proximal femur. All patients had their posterior column preserved according to the surgical plan.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims

While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes.

Methods

This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1249 - 1256
1 Nov 2024
Mangwani J Houchen-Wolloff L Malhotra K Booth S Smith A Teece L Mason LW

Aims

Venous thromboembolism (VTE) is a potential complication of foot and ankle surgery. There is a lack of agreement on contributing risk factors and chemical prophylaxis requirements. The primary outcome of this study was to analyze the 90-day incidence of symptomatic VTE and VTE-related mortality in patients undergoing foot and ankle surgery and Achilles tendon (TA) rupture. Secondary aims were to assess the variation in the provision of chemical prophylaxis and risk factors for VTE.

Methods

This was a multicentre, prospective national collaborative audit with data collection over nine months for all patients undergoing foot and ankle surgery in an operating theatre or TA rupture treatment, within participating UK hospitals. The association between VTE and thromboprophylaxis was assessed with a univariable logistic regression model. A multivariable logistic regression model was used to identify key predictors for the risk of VTE.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1203 - 1205
1 Nov 2024
Taylor LA Breslin MA Hendrickson SB Vallier HA Ollivere BJ


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1327 - 1332
1 Nov 2024
Ameztoy Gallego J Diez Sanchez B Vaquero-Picado A Antuña S Barco R

Aims

In patients with a failed radial head arthroplasty (RHA), simple removal of the implant is an option. However, there is little information in the literature about the outcome of this procedure. The aim of this study was to review the mid-term clinical and radiological results, and the rate of complications and removal of the implant, in patients whose initial RHA was undertaken acutely for trauma involving the elbow.

Methods

A total of 11 patients in whom removal of a RHA without reimplantation was undertaken as a revision procedure were reviewed at a mean follow-up of 8.4 years (6 to 11). The range of motion (ROM) and stability of the elbow were recorded. Pain was assessed using a visual analogue scale (VAS). The functional outcome was assessed using the Mayo Elbow Performance Score (MEPS), the Oxford Elbow Score (OES), and the Disabilities of the Arm, Shoulder and Hand questionnaire (DASH). Radiological examination included the assessment of heterotopic ossification (HO), implant loosening, capitellar erosion, overlengthening, and osteoarthritis. Complications and the rate of further surgery were also recorded.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1240 - 1248
1 Nov 2024
Smolle MA Keintzel M Staats K Böhler C Windhager R Koutp A Leithner A Donner S Reiner T Renkawitz T Sava M Hirschmann MT Sadoghi P

Aims

This multicentre retrospective observational study’s aims were to investigate whether there are differences in the occurrence of radiolucent lines (RLLs) following total knee arthroplasty (TKA) between the conventional Attune baseplate and its successor, the novel Attune S+, independent from other potentially influencing factors; and whether tibial baseplate design and presence of RLLs are associated with differing risk of revision.

Methods

A total of 780 patients (39% male; median age 70.7 years (IQR 62.0 to 77.2)) underwent cemented TKA using the Attune Knee System) at five centres, and with the latest radiograph available for the evaluation of RLL at between six and 36 months from surgery. Univariate and multivariate logistic regression models were performed to assess associations between patient and implant-associated factors on the presence of tibial and femoral RLLs. Differences in revision risk depending on RLLs and tibial baseplate design were investigated with the log-rank test.


Aims

The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders.

Methods

Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 103 or 1 × 106 colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 103 or 1 × 106 CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1257 - 1262
1 Nov 2024
Nowak LL Moktar J Henry P Dejong T McKee MD Schemitsch EH

Aims. We aimed to compare reoperations following distal radial fractures (DRFs) managed with early fixation versus delayed fixation following initial closed reduction (CR). Methods. We used administrative databases in Ontario, Canada, to identify DRF patients aged 18 years or older from 2003 to 2016. We used procedural and fee codes within 30 days to determine which patients underwent early fixation (≤ seven days) or delayed fixation following CR. We grouped patients in the delayed group by their time to definitive fixation (eight to 14 days, 15 to 21 days, and 22 to 30 days). We used intervention and diagnostic codes to identify reoperations within two years. We used multivariable regression to compare the association between early versus delayed fixation and reoperation for all patients and stratified by age (18 to 60 years and > 60 years). Results. We identified 14,960 DRF patients, 8,339 (55.7%) of whom underwent early surgical fixation (mean 2.9 days (SD 1.8)). In contrast, 4,042 patients (27.0%) underwent delayed fixation between eight and 14 days (mean 10.2 days (SD 2.2)), 1,892 (12.7%) between 14 and 21 days (mean 17.5 days (SD 1.9)) and 687 (4.6%) > 21 days (mean 24.8 days (SD 2.4)) post-fracture. Patients who underwent delayed fixation > 21 days post-fracture had a higher odds of reoperation (odds ratio (OR) 1.33 (95% CI 1.11 to 1.79) vs early fixation). This worsened for patients aged > 60 years (OR 1.69 (95% CI 1.11 to 2.79)). We found no difference in the odds of reoperation for patients who underwent delayed fixation within eight to 14 or 15 to 21 days post-fracture (vs early fixation). Conclusion. These data suggest that DRF patients with fractures with unacceptable reduction following CR should be managed within three weeks to avoid detrimental outcomes. Prospective studies are required to confirm these findings. Cite this article: Bone Joint J 2024;106-B(11):1257–1262


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims

Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials.

Methods

A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.