Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level. A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).Aims
Methods
Introduction. Primary stability is an important factor for long-term implant survival in total hip arthroplasty. In revision surgery, implant fixation becomes especially challenging due the acetabular bone defects, which are often present. Previous studies on primary stability of revision components often applied simplified geometrical defect shapes in a variety of sizes and locations. The objectives of this study were to (1) develop a realistic defect model in terms of defect volume and shape based on a clinically existing acetabular bone defect, (2) develop a surrogate acetabular test model, and (3) exemplarily apply the developed approach by testing the primary stability of a pressfit-cup with and without bone graft substitute (BGS). Materials & Methods. Based on clinical computed tomography data and a method previously published [1], volume and shape information of a representative defect, chosen in consultation with four senior hip revision surgeons, was derived. Volume and shape of the representative defect was approximated by nine reaming procedures with hemispherical acetabular reamers, resulting in a simplified defect with comparable volume (18.9 ml original vs. 18.8 ml simplified) and shape. From this simplified defect (Defect D), three additional defect models (Defect A, B, C) were derived by excluding certain reaming procedures, resulting in four defect models to step-wise test different acetabular revision components. A surrogate acetabular model made of 20 PCF polyurethane foam with the main support structures was developed [2]. For the exemplary test, three series for Defect A were defined: Native (acetabulum without defect), Empty (defect acetabulum without filling), Filled (defect acetabulum with BGS filling). All series were treated with a pressfit-cup and subjected to dynamic axial load in direction of maximum resultant force during level walking. Minimum load was 300 N and maximum load was increased step-wise from 600 N to 3000 N. Total relative motion between cup and foam, consisting of inducible displacement and migration, was assessed with the
Modular un-cemented acetabular components are used in over 50% of UK hip replacements. Mal-seating of hard liners has been reported as a cause of failure which may be a result of errors in assembly, but also could be affected by deformation of the acetabular shell on insertion. Little information exists on in vivo shell deformation. Previous work has confirmed the importance of shell diameter and thickness upon shell behaviour, but mostly using single measurements in models or cold cadavers. Exploration of deformation and its relaxation over the first twenty minutes after implantation of eight generic metal cups at body temperature. Using a previously validated cadaveric model at controlled physiological temperature with standardised surgical technique, we tested the null hypothesis that there was no consistency for time dependent or directional change in deformation for a standard metal shell inserted under controlled conditions into the hip joint. Eight custom made titanium alloy (TiAl6V4) cups were implanted into 4 cadavers (8 hips). Time dependent cup deformation was determined using the previously validated ATOS Triple Scan III (ATOS)
INTRODUCTION. Modular knee implants are used to manage large bone defects in revision total knee arthroplasty. These implants are confronted with varying fixation characteristics, changes in load transfer or stiffen the bone. In spite of their current clinical use, the influence of modularity on the biomechanical implant-bone behavior (e.g. implant fixation, flexibility, etc.) still is inadequately investigated. Aim of this study is to analyze, if the modularity of a tibial implant could change the biomechanical implant fixation behavior and the implant-bone flexibility. MATERIAL & METHODS. Nine different stem and sleeve combinations of the clinically used tibial revision system Sigma TC3 (DePuy) were compared, each implanted standardized with n=4 in a total of 36 synthetic tibial bones. Four additional un-implanted bones served as reference. Two different cyclic load situations were applied on the implant: 1. Axial torque of ±7Nm around the longitudinal stem axis to determine the rotational implant stability. 2. Varus-valgus-torque of ±3,5Nm to determine the bending behavior of the stem. A high precision
INTRODUCTION. Deformation of modular acetabular press-fit shells is a topic of much interest for surgeons and manufacturer. Such modular components utilise a titanium shell with a liner manufactured from metal, polyethylene or ceramic. Initial fixation is achieved through a press-fit between shell and acetabulum with the shell mechanically deforming upon insertion. Shell deformation may disrupt the assembly process of inserting the bearing liner into the acetabular shell for modular systems. This may adversely affect the integrity and durability of the components and the tribology of the bearing. OBJECTIVE. Most clinically relevant data to quantify and understand such shell deformation can be achieved by cadaver measurements. ATOS Triple Scan III was identified as a measurement system with the potential to perform those measurements. The study aim was to validate an ATOS Triple Scan III
Concerns have been raised that deformation of
acetabular shells may disrupt the assembly process of modular prostheses.
In this study we aimed to examine the effect that the strength of
bone has on the amount of deformation of the acetabular shell. The
hypothesis was that stronger bone would result in greater deformation.
A total of 17 acetabular shells were inserted into the acetabula
of eight cadavers, and deformation was measured using an optical
measuring system. Cores of bone from the femoral head were taken
from each cadaver and compressed using a materials testing machine.
The highest peak modulus and yield stress for each cadaver were used
to represent the strength of the bone and compared with the values
for the deformation and the surgeon’s subjective assessment of the
hardness of the bone. The mean deformation of the shell was 129
µm (3 to 340). No correlation was found between deformation and
either the maximum peak modulus (r² = 0.011, t = 0.426, p = 0.676) or
the yield stress (r² = 0.024, t = 0.614, p = 0.549) of the bone.
Although no correlation was found between the strength of the bone
and deformation, the values for the deformation observed could be
sufficient to disrupt the assembly process of modular acetabular
components. Cite this article:
To develop a useful surgical navigation system, accurate determination of bone coordinates and thorough understanding of the knee kinematics are important. In this study, we have verified our algorithm for determination of bone coordinates in a cadaver study using skeletal markers, and at the same time, we also attempted to obtain a better understanding of the knee kinematics. The research was performed at the Medical Simulation Center of Tzu Chi University.
INTRODUCTION. Over the last twenty years, image-guided interventions have been greatly expanded by the advances in medical imaging and computing power. A key step for any image-guided intervention is to find the image-to-patient transformation matrix, which is the transformation matrix between the preoperative 3D model of patient anatomy and the real position of the patient in the operating room. In this work, we propose a robust registration algorithm to match ultrasound (US) images with preoperative Magnetic Resonance (MR) images of the Humerus. MATERIALS AND METHODS. The fusion of preoperative MR images with intra-operative US images is performed through an NDI Spectra® Polaris system and a L12-5L60N TELEMED® ultrasound transducer. The use of an ultrasound probe requires a calibration procedure in order to determine the transformation between an US image pixel and its position according to a global reference system. After the calibration step, the patient anatomy is scanned with US probe. US images are segmented in real time in order to extract the desired bone contour. The use of an
Introduction: Standard treatment for distal tibia fractures is the fixation with locking compression plates. Locking plate fixation has revolutionized fracture treatment in the last decade and may be ideally suited for a bridging plate osteosynthesis. This technique allows some controlled axial fracture motion, what essential for secondary bone healing is. A disadvantage of the locking plate technique seems to be an unsymmetrical micro motion along the fracture gap. The micromotion at the far cortex side is much larger than at the near cortex side (near the plate). It is supposed to be that the fracture movement on the near cortex is too small. To increase the motion at the near cortex side a new kind of screws has been developed. In this study we examined the micromotion using normal locking head screws versus the new dynamic locking head screws. Materials and Methods: A simplified fracture model was created by connecting 2 plastic cylinders (POM C, EModul: 3.1GPa) with a standard 11-holes Locking Compression Plate (Synthes). The fracturegap (between the two cylinders) amounted 3mm. Three kinds of fracture models were constructed: The model of a transverse fracture, an oblique fracture and a spiral fracture. An axial load from 0N up to 200N was applied with a testing machine (Zwick). The motion of the fracture model was measured in three dimensions using the
Introduction and Aims: Suture anchors allow consistent reattachment of tendons and ligaments to bone. Many options are available. The purpose of this study was to compare the initial strength of two rotator cuff repair techniques. The hypothesis was that rotator cuff repair strength with anchors would be inferior to transosseous sutures. Method: Eight paired shoulders with a standardised supraspinatus defect were randomised to bioabsorbable nonsuture-based anchor or transosseous suture repair. Each specimen was then subjected to a stepwise cyclic loading protocol, utilising a custom-designed loading apparatus. Repair site migration was measured using an