Total knee arthroplasty (TKA) may provoke ankle symptoms. The aim of this study was to validate the impact of the preoperative mechanical tibiofemoral angle (mTFA), the talar tilt (TT) on ankle symptoms after TKA, and assess changes in the range of motion (ROM) of the subtalar joint, foot posture, and ankle laxity. Patients who underwent TKA from September 2020 to September 2021 were prospectively included. Inclusion criteria were primary end-stage osteoarthritis (Kellgren-Lawrence stage IV) of the knee. Exclusion criteria were missed follow-up visit, post-traumatic pathologies of the foot, and neurological disorders. Radiological angles measured included the mTFA, hindfoot alignment view angle, and TT. The Foot Function Index (FFI) score was assessed. Gait analyses were conducted to measure mediolateral changes of the gait line and ankle laxity was tested using an ankle arthrometer. All parameters were acquired one week pre- and three months postoperatively.Aims
Methods
The aim of this research was to determine biomechanical markers which differentiate medial knee osteoarthritis (OA) patients who do and do not show structural progression over a 2-year period. A cohort of 36 subjects was selected from a longitudinal study (Meireles et al 2017) using Kellgren-Lawrence (KL) scores at baseline and 2-year follow-up. The cohort consisted of 10 healthy controls (HC) (KL=0 at both time points), 15 medial knee OA non-progressors (NPKOA) (KL≥1 at baseline and no change over 2 years), and 11 medial knee OA progressors (PKOA) (KL≥1 at baseline and increase of ≥1 over 2 years). 3D integrated motion capture data from three walking trials were processed through a musculoskeletal modelling framework (Smith et al 2016) to estimate knee joint loading parameters (i.e., magnitude of mean contact
The aim of this study was to compare any differences in the primary outcome (biphasic flexion knee moment during gait) of robotic arm-assisted bi-unicompartmental knee arthroplasty (bi-UKA) with conventional mechanically aligned total knee arthroplasty (TKA) at one year post-surgery. A total of 76 patients (34 bi-UKA and 42 TKA patients) were analyzed in a prospective, single-centre, randomized controlled trial. Flat ground shod gait analysis was performed preoperatively and one year postoperatively. Knee flexion moment was calculated from motion capture markers and force plates. The same setup determined proprioception outcomes during a joint position sense test and one-leg standing. Surgery allocation, surgeon, and secondary outcomes were analyzed for prediction of the primary outcome from a binary regression model.Aims
Methods
It has been recently being investigated how the pressure distribution beneath the foot points to the active usage of the foot in standing adults. Nevertheless, it offers new perspectives in postural research by introducing foot-triggered sensory-motor control strategies in quiet standing dynamics. Furthermore, the spatiotemporal evolution of physiological postural control strategies has not clearly been identified yet. Thus, we have chosen developmental aspects of the infant's postural adjustments as a media to explore learning of biped standing. This study investigates developmental changes in active usage of a contact surface and pressure distribution beneath infants’ foot during learning of upright posture. We started studying longitudinally on 22 female and 22 male infants at their 12.5. th. months (1. st. trimester, T1) and kept on screening the same subjects at every three months (19 females and 12 males at 15.5. th. months (T2), 17 females and 7 males at 18.4. th. months (T3)), during their normal checkup appointments in Gazi University Hospital, Social Pediatrics Department-Ankara/Turkey. Each trial was fulfilled by an infant standing on a pressure pad placed on top of a force plate to collect the pressure distribution data beneath the feet for 15 sec at T1, and 25-sec long duration at T2 and T3 and was repeated at least three times. During the data collection, infants’ parents were beside them trying to get infants’ attention towards themselves preventing them from being distracted and/or moving and walking around. The data collection setup additionally contained one camera for videotaping the infants’ reactions. Our main research interest in this study was to explore the spatiotemporal evolution of the behavioral characteristics of human postural sway. We expected to monitor the developmental changes at an infant's standing experience during their 2. nd. -year epoch through time-frequency domain analyses and explorative/exploitative informatics’ metrics. We computed
Differences at motor control strategies to provide dynamic balance in various tasks in diabetic polyneuropatic (DPN) patients due to losing the lower extremity somatosensory information were reported in the literature. It has been stated that dynamics of center of mass (CoM) is controlled by
Introduction. Managing open tibial fractures according to national guidelines is a primary focus for major trauma
Intro. Across much of medicine, activity levels predict life expectancy, with low levels of activity being associated with increased mortality, and higher levels of activity being associated with longer healthier lives. Resurfacing is a technically demanding procedure that has suffered significant fallout from the failure of a couple of poorly performing designs. However strong evidence associates resurfacing with improved life expectancy in both the short and longer term following surgery. We wondered if there was any relationship between the function of hips following surgery and the extent of that surgery. Could a longer stem inside the femur be the reason for a slightly reduced step length? We proposed the nul hypothesis that there was no clinically relevant difference between stem length and gait. Method. After informed consent each subject was allowed a 5 minute acclimatisation period at 4km/hr on the instrumented treadmill (Kistler Gaitway, Amherst, NY). Their gait performance on an increasing incline at 5, 10 and 15%. At all 0.5km incremental intervals of speed, the vertical component of the ground reaction forces,
INTRODUCTION. Within total hip replacement, articulation of the femoral head near the rim of the acetabular liner creates undesirable conditions leading to a propensity for dislocation[1], increased contact stresses[2], increased load and torque imparted on the acetabular component[3], and increased wear[4]. Propensity for rim loading is affected by prosthesis placement, as well as the kinematics and loading of the patient. The present study investigates these effects. METHODS. CT scans from an average-sized patientwere segmented for the hemipelvis and femur of interest. DePuy Synthes implant models were aligned in a neutral position in Hypermesh. The acetabular liner was assigned deformable solid material properties, and the remainder of the model was assigned rigid properties. Joint reaction forces and kinematics of hip flexion were taken from the public Orthoload database to represent ADLs [5]: Active flexion lying on a table, gait, bending to lift and move a load, and sit-stand. The pelvis was fully constrained, while three-degree-of-freedom (3-DOF) forces were applied to the femur. Hip flexion was kinematically-prescribed while internal-external (I-E) and adduction-abduction (Ad-Ab) DOFs were constrained. Angles of acetabular implant positioning were based on published data by Rathod [6]. Femoral implant position was chosen based on cadaveric in vitro DePuy Synthes measurements of variation in femoral prosthesis position reported previously [7]. Acetabular and Femoral alignment angles were represented for nominal position, as well as positioning + 1σ and + 2σ from the mean in both anteversion and inclination for acetabular components, and both Varus/Valgus and Flexion (angle in sagittal plane) for the femoral component. The analyses were automated within Matlab to execute 68 finite element analyses in Abaqus Explicit and structured in a DOE style analysis with Cup inclination, Cup version, Stem Flexion, and Stem Varus/Valgus, and Activity as variables of interest (64 runs + 4 centerpoints = 68 analyses). From a previous study it was known that acetabular component inclination had the greatest effect on contact pressure location [7], so all data were analyzed relative to inclination, allowing other positioning variables to be represented as variation per inclination position. Results are presented as a percentage, with 0% being pole loading and 100% being rim loading, to normalize for head diameter. RESULTS. As expected, higher cup inclination generally resulted in higher propensity for rim loading. The degree to which this is true, however, is very dependent upon activity. The bent forward, liftweight activity, for example, resulted in relatively less change in
Introduction. Financial and human cost effectiveness is an increasing evident outcome measure of surgical innovation. Considering the human element, the aim is to restore the individual to their “normal” state by sparing anatomy without compromising implant performance. Gait lab studies have shown differences between different implants at top walking speed, but none to our knowledge have analysed differing total hip replacement patients through the entire range of gait speed and incline to show differences. The purpose of this gait study was to 1) determine if a new short stem femoral implant would return patients back to normal 2) compare its performance to established hip resurfacing and long stem total hip replacement (THR) implants. Method. 110 subjects were tested on an instrumented treadmill (Kistler Gaitway), 4 groups (short-stem THR, long-stem THR, hip resurfacing and healthy controls) of 28, 29, 27, and 26 respectively. The new short femoral stem patients (Furlong Evolution, JRI) were taken from the ongoing Evolution Hip trial that have been tested on the treadmill minimum 12months postop. The long stem total hip replacements and hip resurfacing groups were identified from our 800+ patient treadmill database, and only included with tests minimum 12 months postop and had no other joint disease or medical comorbidities which would affect gait performance. All subjects were tested through their entire range of gait speeds and incline after having a 5 minute habituation period. Speed were increased 0.5kmh until maximum walking speed achieved and inclines at 4kmh for 5,10,15%. At all incremental intervals of speed 10seconds ere collected, including vertical ground reaction forces (normalized to body mass),
Financial and human cost effectiveness is an increasing evident outcome measure of surgical innovation. Considering the human element, the aim is to restore the individual to their “normal” state by sparing anatomy without compromising implant performance. Gait lab studies have shown differences between different implants at top walking speed, but none to our knowledge have analysed differing total hip replacement patients through the entire range of gait speed and incline to show differences. The purpose of this gait study was to 1) determine if a new short stem femoral implant would return patients back to normal 2) compare its performance to established hip resurfacing and long stem total hip replacement (THR) implants. 110 subjects were tested on an instrumented treadmill (Kistler Gaitway, Amherst, NY), 4 groups (short-stem THR, long-stem THR, hip resurfacing and healthy controls) of 28, 29, 27, and 26 respectively. The new short femoral stem patients (Furlong Evolution, JRI) were taken from the ongoing Evolution Hip trial that have been tested on the treadmill with minimum 12months postop. The long stem total hip replacements and hip resurfacing groups were identified from out 800 patient gait database. They were only chosen if they were 12 months postop and had no other joint disease or medical comorbidities which would affect gait performance. All subjects were tested through their entire range of gait speeds and incline after having a 5 minute habituation period. Speed intervals were at 0.5kms increments until maximum walking speed achieved and inclines at 4kms for 5, 10, 15%. At all incremental intervals of speed, the vertical component of the ground reaction forces,
In podiatric medicine, diagnosis of foot disorders is often merely based on tests of foot function in static conditions or on visual assessment of the patient's gait. There is a lack of tools for the analysis of foot type and for diagnosis of foot ailments. In fact, static footprints obtained via carbon paper imprint material have traditionally been used to determine the foot type or highlight foot regions presenting excessive plantar pressure, and the data currently available to podiatrists and orthotists on foot function during dynamic activities, such as walking or running, are scarce. The device presented in this paper aims to improve current foot diagnosis by providing an objective evaluation of foot function based on pedobarographic parameters recorded during walking. 23 healthy subjects (16 female, 7 males; age 35 ± 15 years; weight 65.3 ± 12.7; height 165 ± 7 cm) with different foot types volunteered in the study. Subjects' feet were visually inspected with a podoscope to assess the foot type. A tool, comprised of a 2304-sensor pressure plate (P-walk, BTS, Italy) and an ad-hoc software written in Matlab (The Mathworks, US), was used to estimate plantar foot morphology and functional parameters from plantar pressure data. Foot dimensions and arch-index, i.e. the ratio between midfoot and whole footprint area, were assessed against measurements obtained with a custom measurement rig and a laser-based foot scanner (iQube, Delcam, UK). The subjects were asked to walk along a 6m walkway instrumented with the pressure plate. In order to assess the tool capability to discriminate between the most typical walking patterns, each subject was asked to walk with the foot in forcibly pronated and supinated postures. Additionally, the pressure plate orientation was set to +15°, +30°, −15° and −30° with respect to the walkway main direction to assess the accuracy in measuring the foot progression angle (i.e. the angle between the foot axis and the direction of walk). At least 5 walking trials were recorded for each foot in each plate configuration and foot posture. The device allowed to estimate foot length with a maximum error of 5% and foot breadth with an error of 1%. As expected, the arch-index estimated by the device was the lowest in the cavus-feet group (0.12 ± 0.04) and the highest in the flat-feet group (0.29 ± 0.03). These values were between 4 – 10 % lower than the same measurements obtained with the foot scanner. The
Injuries to the foot in athletes are often subtle
and can lead to a substantial loss of function if not diagnosed
and treated appropriately. For these injuries in general, even after
a diagnosis is made, treatment options are controversial and become
even more so in high level athletes where limiting the time away
from training and competition is a significant consideration. In this review, we cover some of the common and important sporting
injuries affecting the foot including updates on their management
and outcomes. Cite this article:
Modular junctions are ubiquitous in contemporary hip arthroplasty. The head-trunnion junction is implicated in the failure of large diameter metal-on-metal (MoM) hips which are the currently the topic of one the largest legal actions in the history of orthopaedics (estimated costs are stated to exceed $4 billion). Several factors are known to influence the strength of these press-fit modular connections. However, the influence of different head sizes has not previously been investigated. The aim of the study was to establish whether the choice of head size influences the initial strength of the trunnion-head connection. Ti-6Al-4V trunnions (n = 60) and two different sizes of cobalt-chromium (Co-Cr) heads (28 mm and 36 mm; 30 of each size) were used in the study. Three different levels of assembly force were considered: 4 kN; 5 kN; and 6 kN (n = 10 each). The strength of the press-fit connection was subsequently evaluated by measuring the pull-off force required to break the connection. The statistical differences in pull-off force were examined using a Kruskal–Wallis test and two-sample Mann–Whitney U test. Finite element and analytical models were developed to understand the reasons for the experimentally observed differences.Objectives
Materials and Methods
The purpose of this study was to analyse the biomechanics of
walking, through the ground reaction forces (GRF) measured, after
first metatarsal osteotomy or metatarsophalangeal joint (MTP) arthrodesis. A total of 19 patients underwent a Scarf osteotomy (50.3 years,
standard deviation (Aims
Patients and Methods
Our goal was to evaluate the use of Ponseti’s
method, with minor adaptations, in the treatment of idiopathic clubfeet
presenting in children between five and ten years of age. A retrospective
review was performed in 36 children (55 feet) with a mean age of
7.4 years (5 to 10), supplemented by digital images and video recordings
of gait. There were 19 males and 17 females. The mean follow-up
was 31.5 months (24 to 40). The mean number of casts was 9.5 (6
to 11), and all children required surgery, including a percutaneous
tenotomy or open tendo Achillis lengthening (49%), posterior release
(34.5%), posterior medial soft-tissue release (14.5%), or soft-tissue
release combined with an osteotomy (2%). The mean dorsiflexion of
the ankle was 9° (0° to 15°). Forefoot alignment was neutral in
28 feet (51%) or adducted (<
10°) in 20 feet (36%), >
10° in
seven feet (13%). Hindfoot alignment was neutral or mild valgus
in 26 feet (47%), mild varus (<
10°) in 19 feet (35%), and varus
(>
10°) in ten feet (18%). Heel–toe gait was present in 38 feet
(86%), and 12 (28%) exhibited weight-bearing on the lateral border
(out of a total of 44 feet with gait videos available for analysis).
Overt relapse was identified in nine feet (16%, six children). The
parents of 27 children (75%) were completely satisfied. A plantigrade foot was achieved in 46 feet (84%) without an extensive
soft-tissue release or bony procedure, although under-correction
was common, and longer-term follow-up will be required to assess
the outcome. Cite this article:
The October 2013 Spine Roundup360 looks at: Standing straighter may reduce falls; Operative management of congenital kyphosis; Athletic discectomy; Lumbar spine stenosis worsens with time; Flexible stabilisation?: spinal stenosis revisited; Do epidural steroids cause spinal fractures?; Who does well with cervical myelopathy?; Secretly adverse to BMP-2?
It has been suggested that extracorporeal shockwave
therapy is a safe and effective treatment for pain relief from recalcitrant
plantar fasciopathy (PF). However, the changes in gait and associated
biomechanical parameters have not been well characterised. We recruited
12 female patients with recalcitrant PF who had a mean age of 59
years (50 to 70) and mean body mass index of 25 kg/m. 2. (22
to 30). The patients reported a mean duration of symptoms of 9.3
months (6 to 15). Shockwave therapy consisting of 1500 impulses
(energy flux density 0.26 mJ/mm. 2. ) was applied for three
sessions, each three weeks apart. A pain visual analogue scale (VAS)
rating, plantar pressure assessment and motion analysis were carried
out before and nine weeks after first shock wave therapy. It was demonstrated
that patients increased their walking velocity and cadence as well
indicating a decrease in pain after shockwave therapy. In the symptomatic
foot, the peak contact pressure over the forefoot increased and
the contact area over the digits decreased. The total foot impulse
also decreased as did stance duration. The duration the centre of
pressure remained in the hindfoot increased in the symptomatic foot
after shockwave therapy. The differences in
At our institution surgical correction of symptomatic
flat foot deformities in children has been guided by a paradigm in
which radiographs and pedobarography are used in the assessment
of outcome following treatment. Retrospective review of children
with symptomatic flat feet who had undergone surgical correction
was performed to assess the outcome and establish the relationship
between the static alignment and the dynamic loading of the foot. A total of 17 children (21 feet) were assessed before and after
correction of soft-tissue contractures and lateral column lengthening,
using standardised radiological and pedobarographic techniques for
which normative data were available. We found significantly improved static segmental alignment of
the foot, significantly improved mediolateral dimension foot loading,
and worsened fore-aft foot loading, following surgical treatment.
Only four significant associations were found between radiological
measures of static segmental alignment and dynamic loading of the foot. Weakness of the plantar flexors of the ankle was a common post-operative
finding. Surgeons should be judicious in the magnitude of lengthening
of the plantar flexors that is undertaken and use techniques that
minimise subsequent weakening of this muscle group. Cite this article:
Loss of proprioception following an anterior
cruciate ligament (ACL) injury has been well documented. We evaluated
proprioception in both the injured and the uninjured limb in 25 patients
with ACL injury and in 25 healthy controls, as assessed by joint
position sense (JPS), the threshold for the detection of passive
movement (TDPM) and postural sway during single-limb stance on a
force plate. There were significant proprioceptive deficits in both ACL-deficient
and uninjured knees compared with control knees, as assessed by
the angle reproduction test (on JPS) and postural sway on single
limb stance. The degree of loss of proprioception in the ACL-deficient
knee and the unaffected contralateral knee joint in the same patient
was similar. The TDPM in the injured knee was significantly higher
than that of controls at 30° and 70° of flexion. The TDPM of the
contralateral knee joint was not significantly different from that
in controls. Based on these findings, the effect of proprioceptive training
of the contralateral uninjured knee should be explored. Cite this article:
Introduction. Medial calcaneal displacement osteotomy with an FDL tendon transfer is a common method of correcting pes planus deformity secondary to grade II tibialis posterior dysfunction. There is currently no evidence that calcaneal displacement alters the