Introduction. In
Introduction. Supraspinatus tears comprise most rotator cuff injuries, the leading cause of shoulder pain and an increasing problem with ageing populations. Surgical repair of considerable or persistent damages is customary, although not invariably successful.
Introduction. The objective of the work is construction of a multi-bioactive scaffold based on that allows a space/time control over the regeneration of damaged bones by Medication-Related Osteonecrosis of the Jaw using a minimal invasive approach based on the injection of the fast-degrading pro neuro and angiogenic ELR (Elastin-Like Recombinamers) based hydrogels. Method. Chemical crosslinking facilitated the creation of multi-bioactive scaffolds using ELRs with reactive groups. Cell-loaded multi-bioactive scaffolds, prepared and incubated, underwent evaluation for adhesion, proliferation, angiogenic, and neurogenic potential. In vitro assessments utilized immunofluorescence staining and ELISA assays, while live-recorded monitoring and live-dead analysis ensured cytocompatibility. In rat and rabbit models, preformed scaffolds were subcutaneously implanted, and the regenerative process was evaluated over time. Rabbit models with MRONJ underwent traditional or percutaneous implantation, with histological evaluation following established bone histological techniques. Result. A 3D scaffold using ELR that combines various peptides with different degradation rates to guide both angiogenesis and neurogenesis has been developed. Notably, scaffolds with different degradation rates promoted distinct patterns of vascularization and innervation, facilitating integration with host tissue. This work demonstrates the potential for tailored
Introduction. The healing of rotator cuff injuries poses significant challenges, primarily due to the complexity of recreating the native tendon-to-bone interface, characterized by highly organized structural and compositional gradients. Addressing this, our innovative approach leverages bioprinted living tissue constructs, incorporating layer-specific growth factors (GFs) to facilitate enthesis regeneration. This method aims to guide in situ zonal differentiation of stem cells, closely mirroring the natural enthesis tissue architecture. Method. Our strategy involves the utilization of advanced bioprinting technology to fabricate living tissue constructs. These constructs are meticulously designed with embedded microsphere-based delivery carriers, ensuring the sustained release of tenogenic, chondrogenic, and osteogenic growth factors. This layer-specific release mechanism is tailored to promote the precise differentiation of stem cells across different regions of the construct, aligning with the gradient nature of enthesis tissues. Result. In vitro studies demonstrated that our layer-specific tissue constructs significantly outperformed basal constructs without GFs, achieving region-specific differentiation of stem cells. More critically, in a rabbit model of rotator cuff tear, these bioprinted living tissue constructs expedited enthesis regeneration. Key outcomes included improved biomechanical properties, enhanced collagen deposition and alignment, and the formation of a gradient fibrocartilage interface with aligned collagen fibrils. After 12 weeks, the constructs achieved an ultimate load failure of 154.3 ± 9.5 N resembling that of native enthesis tissues, marking a notable achievement in
Introduction. Ink engineering can advance 3D-printability for better therapeutics, with optimized proprieties. Herein, we describe a methodology for yielding 3D-printable nanocomposite inks (NC) using low-viscous matrices, via the interaction between the organic and inorganic phases by chemical coupling. Method. Natural photocurable matrices were synthesized: a protein – bovine serum albumin methacrylate (BSAMA), and a polysaccharide – hyaluronic acid methacrylate (HAMA). Bioglass nanoparticles (BGNP) were synthesized and functionalized via aminosilane chemistry. The functionalization of BSAMA, HAMA, and BGNP were quantified via NMR. To arise extrudable inks, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) chemistry was used to link innate carboxylic groups of BSAMA/HAMA and amine-functionalized BGNP. Different crosslinker and BGNP amounts were tested. Visible light photopolymerization is performed, using lithium phenyl-2,4,6-trimethylbenzoylphosphinate. The NC's rheological, mechanical, and biological behavior was evaluated before 3D extrusion printability. Result. All composite formulations effectively immobilized and homogeneously dispersed the BGNP, turning low-viscous materials (< 1 Pa) into shear-thinning formulations with tunable increased elastic/viscous moduli (50-500 Pa). More pronounced increments were found with increasing EDC/NHS and BGNP concentrations. The resulting inks produce robust and stable scaffolds successfully retrieved after post-print photocrosslinking (1-5 kPa). Bioactivity in simulated body fluid and in vitro assays using adipose-derive stem cells revealed a similar calcium/phosphate ratio to that of hydroxyapatite, and increased viability and metabolic activity. BSAMA and HAMA demonstrated distinct natures not only in printability but also in overall cellular performance and mechanical properties, making these ideal for interfacial
To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.Aims
Methods
The reliable production of _in vitro_ chondrocytes that faithfully recapitulate _in vivo_ development would be of great benefit for orthopaedic disease modelling and regenerative therapy(1,2). Current efforts are limited by off-target differentiation, resulting in a heterogeneous product, and by the lack of comparison to human tissue, which precludes detailed evaluation of _in vitro_ cells(3,4). We performed single-cell RNA-sequencing of long bones dissected from first-trimester fetal limbs to form a detailed ‘atlas’ of endochondral ossification. Through 100-gene in-situ sequencing, we placed each sequenced cell type into its anatomical context to spatially resolve the process of endochondral ossification. We then used this atlas to perform deconvolution on a series of previously published bulk transcriptomes generated from _in vitro_ chondrogenesis protocols to evaluate their ability to accurately produce chondrocytes. We then applied single-nuclear RNA-sequencing to cells from the best performing protocol collected at multiple time points to allow direct comparison between the differentiation of _in vitro_ and _in vivo_ cells. We captured 275,000 single fetal cells, profiling the development of chondrocytes from multipotent mesenchymal progenitors to hypertrophic cells at full transcriptomic breadth. Using this atlas as the ground truth for evaluating _in vitro_ cells, we found substantial variability in cell states produced by each protocol, with many showing little similarity to _in vivo_ cells, and all exhibiting off-target differentiation. Trajectory alignment between _in vivo_ and _in vitro_ single-cell data revealed key differences in gene expression dynamics between _in vitro_ and _in vivo cells,_ with several osteoblastic transcription factors erroneously unregulated _in vitro,_ including _FOXO1._. Using this information, we inhibited _FOXO1_ in culture to successfully increase chondrocyte yield _in vitro._. This study presents a new framework for evaluating
Worldwide, tendon disorders are one of the main causes of disability that decrease the quality of life of individuals and represent a substantial economic burden on society. Currently, the main therapies used for tendon injuries are not able to restore tendon functionality, and due to tendons' hypovascular and hypocellular nature, they present a reduced healing capacity, which also limits the success of the available therapies. In order to discover new therapies, extracellular vesicles (EVs), key players in cell-cell communication, have been widely explored for
Our musculoskeletal system has a limited capacity for repair. This has led to increased interest in the development of
Tendons and tendon-to-bone entheses don't usually regenerate after injury, and the hierarchical organization of such tissues makes them challenging sites of study for tissue engineers. In this study, we have tried a novel approach using miRNA and a bioactive bioink to stimulate the regeneration of the enthesis. microRNAs (miRNAs) are short, non-coding sequences of RNA that act as post-transcriptional regulators of gene and protein expression [1]. Mimics or inhibitors of specific miRNAs can be used to restore lost functions at the cell level or improve healing at the tissue level [2,3]. We characterized the healing of a rat patellar enthesis and found that miRNA-16-5p was upregulated in the fibrotic portion of the injured tissue 10 days after the injury. Based on the reported interactions of miRNA-16-5p with the TGF-β pathway via targeting of SMAD3, we aimed to explore the effects of miRNA-16-5p mimics on the tenogenic differentiation of adipose-derived stem cells (ASCs) encapsulated in a bioactive bioink [4,5]. Bioinks with different properties are used for the 3D printing of biomimetic constructs. By integrating cells, materials, and bioactive molecules it is possible to tailor the regenerative capacity of the ink to meet the particular requirements of the tissue to engineer [5]. Here we have encapsulated ASCs in a gelatin-methacryloyl (GelMa) bioink that incorporates miR-16-5p mimics and magnetically responsive microfibers (MRFs). When the bioink is crosslinked in the presence of a magnetic field, the MRFs align unidirectionally to create an anisotropic construct with the ability to promote the tenogenic differentiation of the encapsulated ASCs. Additionally, the obtained GelMA hydrogels retained the encapsulated miRNA probes, which permitted the effective 3D transfection of the ASC and therefore, the regulation of gene expression, allowing to investigate the effects of the miR-16-5p mimics on the tenogenic differentiation of the ASCs in a biomimetic scenario.
Cells typically respond to a variety of geometrical cues in their environment, ranging from nanoscale surface topography to mesoscale surface curvature. The ability to control cellular organisation and fate by engineering the shape of the extracellular milieu offers exciting opportunities within
Recently, technologies to culture one or more cell types in three dimensions have attracted a great deal of attention in
Biofabrication is a popular technique to produce personalized constructs for
Stem cell therapy for the intervertebral disc (IVD) is highly debated but holds great promises. From previous studies, it is known that notochordal cells are highly regenerative and may stimulate other differentiated cells to produce more matrix. Lately, a particular tissue-specific progenitor cell population has been identified in the centre of the intervertebral disc (IVD. The current hope is that these nucleus pulposus progenitor cells (NPPC) could play a particular role in IVD regeneration. Current evidence confirms the presence of these cells in murine, canine, bovine and in the human fetal/surgical samples. Noteworthy, one of the main markers to identify these cells, i.e., Tie2, is a typical marker for endothelial cells. Thus, it is not very clear what their origin and their role might be in the context of developmental biology. In human surgical specimens, their presence is, even more, obscured depending on the donor's age and the condition of the IVD and other yet unknown factors. Here, I revisit the recent literature on regenerative cells identified for the IVD in the past decades. Current evidence how these NPPC can be isolated and detected in various species and tissues will be recapitulated. Future directions will be provided on how these progenitor cells could be used for regenerative medicine and
A major obstacle in biofabrication is replicating the organization of the extracellular matrix and cellular patterns found in anisotropic tissues within bioengineered constructs. While magnetically-assisted 3D bioprinting techniques have the potential to create scaffolds that mimic natural biological structures, they currently lack the ability to accurately control the dispersion of magnetic substances within the bioinks without compromising the fidelity of the intended composite. To overcome this dichotomy, the concepts of magnetically- and matrix-assisted 3D bioprinting are combined here. This method preserves the resolution of printed structures by keeping low viscosity bioinks uncrosslinked during printing, which allows for the arrangement of magnetically-responsive microfibers without compromising the structural integrity of the design. Solidification is induced after the microfibers are arranged in the desired pattern. Furthermore, the precise design of these magnetic microfillers permits the utilization of low levels of inorganic materials and weak magnetic field strengths, which reduces the potential risks that may be associated with their use. The effectiveness of this approach is evaluated in the context of tendon
Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore,
Degenerative disc disease, associated to low back pain, afflicts more than 50% of humans, and represents a major healthcare problem, especially for the pathology initiation. Current treatments range from conservative strategies to more invasive surgical techniques, such as disc removal and vertebral fusion. In the Intervertebral Disease (IVD) the nucleus pulposus (NP) degeneration is a key factor for the pathology initiation. Several
Skeletal muscle
Bottom-up
The application of immune regenerative strategies to deal with unsolved pathologies, such as tendinopathies, is getting attention in the field of