Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

BIOFUNCTIONALIZED 3D-BIOPRINTED VASCULAR-LIKE STRUCTURES: AN ADVANCED APPROACH TO PROMOTE ENDOTHELIAL TISSUE REGENERATION

The European Orthopaedic Research Society (EORS) 31st Annual Meeting, Porto, Portugal, 27–29 September 2023. Part 1 of 2.



Abstract

Biofabrication is a popular technique to produce personalized constructs for tissue engineering. In this study we combined laponite (Lap), gellan gum (GG) with platelet-rich plasma (PRP) aiming to enhance the endothelial regeneration through the synergistic effects of their individual properties. Laponite has the ability to form porous three-dimensional networks mimicking the extracellular matrix structure, and PRP delivery of growth factors stimulates the endothelial cell proliferation and migration, offering a composite bioink for cell growth and support. The sustained release of these growth factors from the GG-laponite-PRP composite material over time provides a continuous source of stimulation for the cells, leading to more effective tissue engineering strategies for endothelial tissue regeneration. Four blend compositions comprising 1% w/v GG and 0.5 or 1% w/v Lap and 25% v/v PRP were combined with Wharton jelly mesenchymal stem cells (WJ-MSCs) and bioprinted into vessel-like structures with an inner diameter of 3 mm and a wall thickness of 1 mm. Stress/strain analysis revealed the elastomeric properties of the hydrogels with Young modulus values of 10 MPa. Increasing the Lap concentration led to a non-significant decrease of swelling ratio from 93 to 91%. Live/dead assay revealed cell viability of at least 76%, with the 0.5%Lap-GG viability exceeding 99% on day 21. Gradual increase of glycosaminoglycans accumulation and collagen production indicate promotion of ECM formation. The expression and membranous localization of PECAM-1 from day 7 and the granular intracellular localization of vWF after 2 weeks demonstrate in vitro endothelial functionality. In vivo subcutaneous implantation indicated the absence of any adverse immunological reactions. The results reveal the expression of both vWF and PECAM-1 by WJ-MSCs entrapped in all four construct compositions with significantly higher expression of vWF in the presence of PRP.


Email: