Aims. This study aimed to explore the role of
Bone regeneration during treatment of staphylococcal bone infection is challenging due to the ability of The human osteoblast-like Saos-2 cells infected with Aims
Methods
Periprosthetic joint infection (PJI) is a difficult complication requiring a comprehensive eradication protocol. Cure rates have essentially stalled in the last two decades, using methods of antimicrobial cement joint spacers and parenteral antimicrobial agents. Functional spacers with higher-dose antimicrobial-loaded cement and antimicrobial-loaded calcium sulphate beads have emphasized local antimicrobial delivery on the premise that high-dose local antimicrobial delivery will enhance eradication. However, with increasing antimicrobial pressures, microbiota have responded with adaptive mechanisms beyond traditional antimicrobial resistance genes. In this review we describe adaptive resistance mechanisms that are relevant to the treatment of PJI. Some mechanisms are well known, but others are new. The objective of this review is to inform clinicians of the known adaptive resistance mechanisms of microbes relevant to PJI. We also discuss the implications of these adaptive mechanisms in the future treatment of PJI. Cite this article:
Periprosthetic joint infection (PJI) is a potentially devastating complication of joint replacement surgery. Osteocytes comprise 90–95% of all cells in hard bone tissue, are long-lived and are becoming increasingly recognised as a critical cell type in the regulation of bone and systemic physiology. The purpose of this study was to examine role of these cells in PJI pathophysiology and aetiology, with the rationale that their involvement could contribute to the difficulty in detecting and clearing PJI. This study examined the ability of human osteocytes to become infected by Staphylococcus aureus and the responses of both the host cell and pathogen in this scenario. Several S. aureus (MRSA) strains were tested for their ability to infect human primary osteocyte-like cells in vitro and human bone samples ex vivo. Bone biopsies were retrieved from patients undergoing revision total hip arthroplasty for either aseptic loosening associated with osteolysis, or for PJI. Retrieved bacterial colony number from cell lysates and colony morphology were determined. Gene expression was measured by microarray/bioinformatics analysis and/or real-time RT-PCR. Exposure to planktonic S. aureus (approx. 100 CFU/cell) resulted in intracellular infection of human osteocyte-like cells. We found no evidence of increased rates of osteocyte cell death in bacteria exposed cultures. Microarray analysis of osteocyte gene expression 24h following exposure revealed more than 1,500 differentially expressed genes (fold-change more than 2, false discovery rate p < 0.01). The gene expression patterns were consistent with a strong innate immune response and altered functionality of the osteocytes. Consistent patterns of host gene expression were observed between experimentally infected osteocyte-like cultures and human bone, and in PJI patient bone samples. Internalised bacteria switched to the quasi-dormant
Aim. Leading etiology of Bone and Join infections (BJI), Staphylococcus aureus (SA) is responsible for difficult-to-treat infections mainly because of three persistence factors: (i) biofilm formation, (ii) persistence within bone cells and (iii) switch to the
Periprosthetic joint infections (PJI) are increasing in prevalence and are recognised as one of the most common modes of failure of joint replacements. Osteomyelitis arising from PJI is challenging to treat, difficult to cure and increases patient mortality 5-fold. PJI can have subtle symptoms and lie dormant or go undiagnosed for many years, suggesting persistent bacterial infection. Staphylococcus aureus is the most common pathogen causing PJI. Osteocytes are the most numerous and long-lived cell type in hard bone tissue. Our recent work has shown that S. aureus can infect and reside in human osteocytes without causing cell death, both experimentally and in bone samples from patients with PJI. Osteocytes respond to infection by the differential regulation of a large number of genes, suggesting previously unknown immune functions of this important cell type. S. aureus adapts during intracellular infection of osteocytes by adopting a quasi-dormant,
Bactericidal levels of antibiotics are difficult
to achieve in infected total joint arthroplasty when intravenous antibiotics
or antibiotic-loaded cement spacers are used, but intra-articular
(IA) delivery of antibiotics has been effective in several studies.
This paper describes a protocol for IA delivery of antibiotics in
infected knee arthroplasty, and summarises the results of a pharmacokinetic
study and two clinical follow-up studies of especially difficult
groups: methicillin-resistant Cite this article:
Copal bone cement loaded with gentamicin and clindamicin was developed recently as a response to the emerging occurrence of gentamicin-resistant strains in periprothetic infections. The objective of this study was to compare the in vitro antibiotic release and antimicrobial efficacy of gentamicin/clindamicin-loaded Copal bone cement and gentamicin-loaded Palacos R-G bone cement, as well as biofilm formation on these cements. In order to determine antibiotic release, cement blocks were placed in phosphate buffer and aliquots were taken at designated times for measurement of antibiotic release. In addition, the bone cement discs were pressed on agar to study the effects of antibiotic release on bacterial growth. Biofilm formation on the different bone cements was also investigated after 1 and 7 days using plate counting and confocal laser scanning microscopy (CLSM). Experiments were done with a gentamicin-sensitive S. aureus and a gentamicin-resistant CNS. Antibiotic release after 672 h from Copal bone cement was more extensive (65% of the clindamycin and 41% of the gentamicin incorporated) than from Palacos R-G (4% of the gentamicin incorporated). The higher antibiotic release from Copal resulted in a stronger and more prolonged inhibition of bacterial growth on agar. Plate counting and CLSM of biofilms grown on the bone cements showed that antibiotic release reduced bacterial viability, most notably close to the cement surface. Moreover, the gentamicin-sensitive S. aureus formed gentamicin-resistant