This study aimed to assess the carbon footprint associated with total hip arthroplasty (THA) in a UK hospital setting, considering various components within the operating theatre. The primary objective was to identify actionable areas for reducing carbon emissions and promoting sustainable orthopaedic practices. Using a life-cycle assessment approach, we conducted a prospective study on ten cemented and ten hybrid THA cases, evaluating carbon emissions from anaesthetic room to recovery. Scope 1 and scope 2 emissions were considered, focusing on direct emissions and energy consumption. Data included detailed assessments of consumables, waste generation, and energy use during surgeries.Aims
Methods
Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.Aims
Methods
Degenerative cervical spondylosis (DCS) is a common musculoskeletal disease that encompasses a wide range of progressive degenerative changes and affects all components of the cervical spine. DCS imposes very large social and economic burdens. However, its genetic basis remains elusive. Predicted whole-blood and skeletal muscle gene expression and genome-wide association study (GWAS) data from a DCS database were integrated, and functional summary-based imputation (FUSION) software was used on the integrated data. A transcriptome-wide association study (TWAS) was conducted using FUSION software to assess the association between predicted gene expression and DCS risk. The TWAS-identified genes were verified via comparison with differentially expressed genes (DEGs) in DCS RNA expression profiles in the Gene Expression Omnibus (GEO) (Accession Number: GSE153761). The Functional Mapping and Annotation (FUMA) tool for genome-wide association studies and Meta tools were used for gene functional enrichment and annotation analysis.Aims
Methods
In the 1990s, a bioactive bone cement (BABC) containing apatite-wollastonite glass-ceramic (AW-GC) powder and bisphenol-a-glycidyl methacrylate resin was developed at our hospital. In 1996, we used BABC to fix the acetabular component in primary total hip arthroplasty (THA) in 20 patients as part of a clinical trial. The purpose of this study was to investigate the long-term results of primary THA using BABC. A total of 20 patients (three men and 17 women) with a mean age of 57.4 years (40 to 71), a mean body weight of 52.3 kg (39 to 64), and a mean body mass index (BMI) of 23.0 kg/m2 (19.8 to 28.6) were evaluated clinically and radiologically. Survival analyses were undertaken, and wear analyses were carried out using a computer-aided method.Aims
Patients and Methods
We present the clinical and radiological results at a minimum
follow-up of five years for patients who have undergone multiple
cement-in-cement revisions of their femoral component at revision
total hip arthroplasty (THA). We reviewed the outcome on a consecutive series of 24 patients
(10 men, 14 women) (51 procedures) who underwent more than one cement-in-cement
revision of the same femoral component. The mean age of the patients was
67.5 years (36 to 92) at final follow-up. Function was assessed using the original Harris hip score (HHS),
Oxford Hip Score (OHS) and the Merle D’Aubigné Postel score (MDP).Aims
Patients and Methods
Anterior cruciate ligament (ACL) reconstruction
is commonly performed and has been for many years. Despite this, the
technical details related to ACL anatomy, such as tunnel placement,
are still a topic for debate. In this paper, we introduce the flat
ribbon concept of the anatomy of the ACL, and its relevance to clinical
practice. Cite this article:
This annotation considers the place of extra-articular
reconstruction in the treatment of anterior cruciate ligament (ACL)
deficiency. Extra-articular reconstruction has been employed over
the last century to address ACL deficiency. However, the technique
has not gained favour, primarily due to residual instability and
the subsequent development of degenerative changes in the lateral
compartment of the knee. Thus intra-articular reconstruction has
become the technique of choice. However, intra-articular reconstruction
does not restore normal knee kinematics. Some authors have recommended
extra-articular reconstruction in conjunction with an intra-articular
technique. The anatomy and biomechanics of the anterolateral structures
of the knee remain largely undetermined. Further studies to establish
the structure and function of the anterolateral structures may lead
to more anatomical extra-articular reconstruction techniques that
supplement intra-articular reconstruction. This might reduce residual
pivot shift after an intra-articular reconstruction and thus improve
the post-operative kinematics of the knee.
The Universal Clamp (U-Clamp) is based in a sub-laminar
The subject of central nervous system damage includes a wide variety of problems, from the slow selective ‘picking off’ of characteristic sub-populations of neurons typical of neurodegenerative diseases, to the wholesale destruction of areas of brain and spinal cord seen in traumatic injury and stroke. Experimental repair strategies are diverse and the type of pathology dictates which approach will be appropriate. Damage may be to grey matter (loss of neurons), white matter (cutting of axons, leaving neurons otherwise intact, at least initially) or both. This review will consider four possible forms of treatment for repair of the human central nervous system.
Crescent fracture dislocations are a well-recognised subset of pelvic ring injuries which result from a lateral compression force. They are characterised by disruption of the sacroiliac joint and extend proximally as a fracture of the posterior iliac wing. We describe a classification with three distinct types. Type I is characterised by a large crescent fragment and the dislocation comprises no more than one-third of the sacroiliac joint, which is typically inferior. Type II fractures are associated with an intermediate-size crescent fragment and the dislocation comprises between one- and two-thirds of the joint. Type III fractures are associated with a small crescent fragment where the dislocation comprises most, but not all of the joint. The principal goals of surgical intervention are the accurate and stable reduction of the sacroiliac joint. This classification proves useful in the selection of both the surgical approach and the reduction technique. A total of 16 patients were managed according to this classification and achieved good functional results approximately two years from the time of the index injury. Confounding factors compromise the summary short-form-36 and musculoskeletal functional assessment instrument scores, which is a well-recognised phenomenon when reporting the outcome of high-energy trauma.
There is no doubt that the closed body-exhaust system plays an important role in reducing infection rate in total hip arthroplasty. This demands a secure body-exhaust air hose. The current method in securing the air hose by tying the hose