header advert
Results 1 - 20 of 143
Results per page:
Bone & Joint Research
Vol. 13, Issue 3 | Pages 101 - 109
4 Mar 2024
Higashihira S Simpson SJ Morita A Suryavanshi JR Arnold CJ Natoli RM Greenfield EM

Aims. Biofilm infections are among the most challenging complications in orthopaedics, as bacteria within the biofilms are protected from the host immune system and many antibiotics. Halicin exhibits broad-spectrum activity against many planktonic bacteria, and previous studies have demonstrated that halicin is also effective against Staphylococcus aureus biofilms grown on polystyrene or polypropylene substrates. However, the effectiveness of many antibiotics can be substantially altered depending on which orthopaedically relevant substrates the biofilms grow. This study, therefore, evaluated the activity of halicin against less mature and more mature S. aureus biofilms grown on titanium alloy, cobalt-chrome, ultra-high molecular weight polyethylene (UHMWPE), devitalized muscle, or devitalized bone. Methods. S. aureus-Xen36 biofilms were grown on the various substrates for 24 hours or seven days. Biofilms were incubated with various concentrations of halicin or vancomycin and then allowed to recover without antibiotics. Minimal biofilm eradication concentrations (MBECs) were defined by CFU counting and resazurin reduction assays, and were compared with the planktonic minimal inhibitory concentrations (MICs). Results. Halicin continued to exert significantly (p < 0.01) more antibacterial activity against biofilms grown on all tested orthopaedically relevant substrates than vancomycin, an antibiotic known to be affected by biofilm maturity. For example, halicin MBECs against both less mature and more mature biofilms were ten-fold to 40-fold higher than its MIC. In contrast, vancomycin MBECs against the less mature biofilms were 50-fold to 200-fold higher than its MIC, and 100-fold to 400-fold higher against the more mature biofilms. Conclusion. Halicin is a promising antibiotic that should be tested in animal models of orthopaedic infection. Cite this article: Bone Joint Res 2024;13(3):101–109


Bone & Joint Research
Vol. 13, Issue 3 | Pages 91 - 100
1 Mar 2024
Yamamoto Y Fukui T Sawauchi K Yoshikawa R Takase K Kumabe Y Maruo A Niikura T Kuroda R Oe K

Aims. Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Methods. Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies. Results. The live cells rate (the ratio of total number of cells in the well plate to the absorbance-measured number of live cells) was significantly decreased at ≥ 500 μg/ml of gentamicin on day 14; apoptosis rate was significantly increased at ≥ 750 μg/ml, and ALP activity was significantly decreased at ≥ 750 μg/ml. Real-time reverse transcription-polymerase chain reaction results showed no significant decrease in the ALP and activating transcription factor 4 transcript levels at ≥ 1,000 μg/ml on day 7. Mineralization potential was significantly decreased at all concentrations. Restoration of cell viability was significantly decreased at 750 and 1,000 μg/ml on day 21 and at 500 μg/ml on day 28, and ALP activity was significantly decreased at 500 μg/ml on day 28. Conclusion. Our findings suggest that the exposure concentration and duration of antibiotic administration during CLAP could affect cell functions. However, further in vivo studies are needed to determine the optimal dose in a clinical setting. Cite this article: Bone Joint Res 2024;13(3):91–100


Bone & Joint 360
Vol. 13, Issue 1 | Pages 41 - 43
1 Feb 2024

The February 2024 Research Roundup360 looks at: If you use a surgical helmet, you should seal your gown-glove interface; The use of iodophor-impregnated drapes in patients with iodine-related allergies: a case series and review of the literature; Location of the ovaries in children and efficacy of gonadal shielding in hip and pelvis radiography; Prehospital tranexamic acid administration does not improve outcomes in severe trauma patients; Silver-coated distal femur megaprosthesis in chronic infections with severe bone loss: a multicentre case series.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 43 - 43
24 Nov 2023
Rasmussen HC Stilling M Lilleøre JG Petersen E Jørgensen AR Hvistendahl MA Hanberg P Bue M
Full Access

Aim. The β-lactam penicillin is often used in the treatment of soft tissue infections and osteomyelitis caused by penicillin susceptible Staphylococcus aureus. Oral antibiotic treatment has been shown to be non-inferior to intravenous (IV) therapy when used during the first 6 weeks in complex orthopedic infections (OVIVA trial). However, the use of oral β-lactams in osteomyelitis treatment remains a topic of debate due to low and variable bioavailability. The aim was to assess the time for which the unbound penicillin concentration exceeded targeted minimum inhibitory concentrations (fT>MIC) in cancellous bone and subcutaneous tissue after IV (penicillin G) and oral (penicillin V) treatment in a porcine microdialysis model. Method. 12 female pigs (75kg) were assigned to standard clinical regimens of either three doses of IV penicillin G (1.2g) or oral penicillin V (0.8g) every 6h over 18h. Microdialysis catheters were placed for sampling in tibial cancellous bone and adjacent subcutaneous tissue. Data was collected in the first dosing interval (0–6h; prophylactic situation) and the third dosing interval (12–18h; assumed steady state). Plasma samples were collected for reference. MIC targets of 0.125μg/mL (Staph. aureus breakpoint), 0.25μg/mL (Strep. Group A, B, C and G breakpoint) and 0.5μg/mL (4xMIC) were applied. Results. For all investigated MIC targets, IV penicillin G resulted in a longer mean fT>MIC in cancellous bone during the first dosing interval, and in both cancellous bone and subcutaneous tissue during the third dosing interval compared to oral penicillin V. Across compartments, mean fT>MIC for IV penicillin G (MIC: 0.125, 0.25 and 0.5μg/mL) were ≥97%, ≥84% and ≥75% during the first dosing interval, and 100%, ≥95% and ≥88%, during the third dosing interval. The mean fT>MIC for oral penicillin V were ≥40%, ≥24% and ≥7% during the first dosing interval, and ≥42%, ≥36% and ≥18% during the third dosing interval. Conclusions. The findings suggest that standard clinical dosing of IV penicillin G provides superior fT>MIC in cancellous bone and subcutaneous tissue compared to oral penicillin V, particularly in the third dosing interval. This emphasizes the importance of appropriate route of administration when applying penicillin treatment. Acknowledgements. Funding was received from The Kirsten and Freddy Johansen Foundation, The Novo Nordisk Foundation, The Beckett Foundation, The Hede Nielsen Family Foundation, King Christian the 10. th. Foundation, The A.P. Møller Foundation, The Dagmar Marshalls Foundation, and The Carl and Ellen Hertz Foundation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 31 - 31
24 Nov 2023
Mdingi V Gens L Mys K Zeiter S Marais L Richards G Moriarty F Chitto M
Full Access

Aim. In this study we investigated the effects of non-steroidal anti-inflammatory drugs (NSAIDs) with different cyclooxygenase (COX) selectivity on orthopaedic device-related infections (ODRIs) in a rat model. Specifically, we aimed to measure the impact of NSAID therapy on bone changes, bacterial load, and cytokine levels after treatment with antibiotics. In addition, we compared the effects of long vs short-term celecoxib (a COX-2 inhibitor) treatment on the same outcomes. Method. Skeletally mature female Wistar rats were implanted with Staphylococcus epidermidis-contaminated polyetheretherketone (PEEK) screws (1.5 × 10. 6. CFU per screw) in the proximal right tibia and monitored for 7 days. All animals received subcutaneous antibiotics (rifampicin plus cefazolin) for two weeks from day 7 to 21. In phase I of the study, rats were randomly assigned to receive 28 days of oral treatment with acetylsalicylic acid, ibuprofen, celecoxib, or vehicle control. In phase II, an additional group received seven days of celecoxib treatment from day 0 to 7. After implantation, bone changes were monitored using in vivo micro-CT and histology. Quantitative bacteriology was performed at euthanasia. Plasma samples were collected to measure cytokine levels at four time points (day 0, 6, 20, and 28). Results. The combination of antibiotic therapy resulted in treatment success in 85.71% of cases, while the addition of long-term celecoxib treatment reduced it to 45.45%. Long-term celecoxib treatment significantly reduced bone loss (33.85% mean difference [95% CI 14.12–53.58], p=0.0004 on day 6 bone fraction) and periosteal reaction (0.2760 μm mean difference [95% CI 0.2073–0.3448], p<0.0001 on day 14 periosteal thickness) during the early post-infection period compared to the control group. Short-term celecoxib treatment showed similar radiological results, however, there was no significant reduction in treatment success in the celecoxib group (88.9%). No differences in the selected inflammatory markers were observed. Conclusion. Our findings highlight the potential benefits of short-term use of celecoxib in improving bone fraction during the early post-infection period without impairing the efficacy of antibiotic therapy. This study suggests that celecoxib may be a useful addition to the multimodal approach to pain management in orthopaedic device-related infections


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 47 - 47
24 Nov 2023
Veerman K Vos F Spijkers K Goosen J Telgt D
Full Access

Aim. Bone and joint infection requires antimicrobial treatment for 6 to 12 weeks. When patients are well prepared and instructed regarding their therapy, they are more likely to have less side effects and improved compliance. Although side effects are common, this coaching is often not routinely performed when oral treatment is given. We developed a monitoring and guidance program for our outpatients who are on long term antimicrobial therapy, in which we can early signal side effects and treatment failure and coach the patients in their journey of infection treatment. Method. In our tertiary referral centre for orthopaedic infections, we started the outpatient monitoring of antimicrobial treatment (OMAT)- team for patients who will receive antimicrobial therapy for >2 weeks. Before discharge, our trained nurse gives instruction to the patient. Within 3 days after hospital discharge the patient is contacted by phone to, if necessary, clarify ambiguities in monitoring set up. During this contact, the nurse checks for side effects, addresses logistic problems regarding laboratory monitoring or future appointments and coaches patients for other questions. The patient is instructed how to recognize and who to contact in case of red flags and problems possibly related to the treatment. This is repeated after every laboratory check-up. Supervision is performed by an infectious disease specialist in close collaboration with the patient's surgeon. Results. The OMAT-team started in October 2020 and consists of 3 trained nurses and 3 ID specialist. In one year, 453 patients were proactively monitored for a mean of 11 weeks. Routinely, laboratory measurements were performed 1 week after the start of therapy and every 3–4 weeks thereafter, which resulted in 2711 contacts per year. In total, 64% of the patients reported side effects and 13% needed one or more extra laboratory measurement. This led to 40 additional outpatient consultations by the ID specialist because of complications of treatment and a switch of the antimicrobial agent in 31% of the patients. Conclusions. OMAT seems to improve the early signalling of complications regarding treatment, which is likely to improve compliance. The OMAT-team serves as a easy to access team to discuss any problem regarding antimicrobial therapy. Being proactive, the OMAT-team intervenes in an early stage of problems regarding side effects, logistics of the treatment and possible treatment failure. Future analysis of our data will show to what extend this will lead to prevention of re-hospitalization and improvement of success rate


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 43 - 43
17 Nov 2023
Wilkinson H Cool P
Full Access

Abstract. Objectives. The objective of this study is to investigate if genomic sequencing is a useful method to diagnose orthopaedic infections. Current methods used to identify the species of bacteria causing orthopaedic infections take considerable time and the results are frequently insufficient for guiding antibiotic treatment. The aim here is to investigate if genomic sequencing is a faster and more reliable method to identify the species of bacteria causing infections. Current methods include a combination of biochemical markers and microbiological cultures which frequently produce false positive results and false negative results. Methods. Samples of prosthetic fluid were obtained from surgical interventions to treat orthopaedic infections. DNA is extracted from these samples lab and nanopore genomic sequencing is performed. Initial investigations informed that a sequencing time of 15 minutes was sufficient. The resulting genomic sequence data was classified using Basic Local Alignment Tool (BLAST) against the NCBI bacterial database and filtered by only including reads with an identity score of 90 and E-value of 1e-50. An E-value of 1e-50 suggests a high-quality result and is commonly used when analysing genomic data. This data was then filtered in R Studio to identify if any species were associated with orthopaedic infections. The results from genomic sequencing were compared to microbiology results from the hospital to see if the same species had been identified. The whole process from DNA extraction to output took approximately 2 hours, which was faster than parallel microbiological cultures. Results. In these preliminary analyses, 15 samples have been collected from patients with confirmed/suspected orthopaedic infections. To date, 11 samples from confirmed infected patients have been sequenced and a summary of the findings are presented in the table attached. As well as finding bacteria species to match microbiological cultures, genomic sequencing has also identified bacteria when culture results have been negative, but the patient is known to have an infection due to clinical indication and previous culture results. This example suggests genomic sequencing may have higher sensitivity than microbiological cultures at detecting bacteria causing orthopaedic infections. Results in table indicate the identification of bacteria from genomic sequencing that match microbiological cultures are high quality. Conclusions. Preliminary data presented using genomic sequencing suggests that the technique may be useful to identify bacterial species causing orthopaedic infections and can do so in a shorter time frame than current microbial methods. The results from genomic sequencing all produced a number of false positive results which hopefully can be reduced by improving the bioinformatic techniques used and increasing the sample number to include individuals without an infection. Further analysis will also look at identifying antibiotic resistance genes in the sequencing data and seeing if this ca be used to predict which patients will and will not respond to antibiotic treatment. The aim at the end of this project is to demonstrate if genomic sequencing is a more sensitive method to identify bacteria causing orthopaedic infections that current methods and if it can be used to guide antibiotic treatment. Include limitations, next steps and bigger picture. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 81 - 81
7 Nov 2023
Roos H
Full Access

The incidence of PJI in knee replacements is 2.8% and slightly lower with hip replacement surgery. PJI make up 15% (or even more) of knee revisions. To combat PJI, antibiotic laden bone cement has been used for many decades, but antibiotic stewardship dictates more prudent management of antimicrobials. Projected increase in infection rate, due to increased surgery and latent infection to be almost 5-fold up to 2035. Biofilm is a complex structure of bacteria and polysaccharide matrix and, is recognised as a major component in PJI and other orthopaedic infections. Biofilm is responsible for high incidence of resistance to antimicrobials and ineffective host immune response. Method. Stabilized hypochlorous acid has been reported to have a rapid kill rate on all pathogens, including MDR pathogens associated with chronic and acute wound infections. It destroys biofilm on contact, is not cytotoxic, reduces inflammation and stimulates wound healing. 0,038% of Hypochlorous acid was used as prophylaxis against infection and to treat PJI. We report on our experience with hypochlorous acid as a wound irrigation as prophylaxis against infection (more than 600 cases) and for PJI. We also report on a University study where a head to head analysis was done on the anti-biofilm efficacy between hypochlorous acid 0,038% (Trifectiv Surgical Wound Irrigation) and Product X (an industry-standard product for the prevention and treatment of biofilm infection. Hypochlorous acid offers a valuable addition to the armamentarium of wound antiseptics, with added anti-inflammatory value. An in vitro study demonstrated superior efficacy against biofilm when compared to Product X


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 30 - 30
7 Nov 2023
Mdingi V Marais L Gens L Mys K Zeiter S Richards G Moriarty F Chittò M
Full Access

We investigated the effects of non-steroidal anti-inflammatory drugs (NSAIDs) with different cyclooxygenase (COX) selectivity on orthopaedic device-related infections (ODRIs) in a rat model. We aimed to measure the impact of NSAID therapy on bone changes, bacterial load, and cytokine levels after treatment with antibiotics. We also compared the effects of long vs short-term celecoxib (a COX-2 inhibitor) treatment on the same outcomes. Skeletally mature female Wistar rats were implanted with Staphylococcus epidermidis- contaminated polyetheretherketone (PEEK) screws in the proximal right tibia and monitored for 7 days. All animals received subcutaneous antibiotics (rifampicin plus cefazolin) for two weeks from day 7 to 21. In phase I of the study, rats were randomly assigned to receive 28 days of oral treatment with acetylsalicylic acid, ibuprofen, celecoxib, or vehicle control. In phase II, an additional group received seven days of celecoxib treatment from day 0 to 7. Bone changes were monitored using in vivo micro-CT and histology. Quantitative bacteriology was performed at euthanasia. Plasma samples were collected to measure cytokine levels on days 0, 6, 20, and 28. Combination antibiotic therapy resulted in treatment success in 85.71% of cases, while the addition of long-term celecoxib treatment reduced it to 45.45%. Long-term celecoxib treatment significantly reduced bone loss (33.85% mean difference [95% CI 14.12–53.58], p=0.0004 on day 6 bone fraction) and periosteal reaction (0.2760 μm mean difference [95% CI 0.2073–0.3448], p<0.0001 on day 14 periosteal thickness) during early infection compared to the control group. Short- term celecoxib treatment showed similar radiological results without a reduction in treatment success (88.9%). No differences in the inflammatory markers were observed. Our findings highlight the potential benefits of short-term use of celecoxib in improving bone fraction during the early post-infection period without impairing the efficacy of antibiotic therapy


Bone & Joint Open
Vol. 4, Issue 11 | Pages 832 - 838
3 Nov 2023
Pichler L Li Z Khakzad T Perka C Pumberger M Schömig F

Aims

Implant-related postoperative spondylodiscitis (IPOS) is a severe complication in spine surgery and is associated with high morbidity and mortality. With growing knowledge in the field of periprosthetic joint infection (PJI), equivalent investigations towards the management of implant-related infections of the spine are indispensable. To our knowledge, this study provides the largest description of cases of IPOS to date.

Methods

Patients treated for IPOS from January 2006 to December 2020 were included. Patient demographics, parameters upon admission and discharge, radiological imaging, and microbiological results were retrieved from medical records. CT and MRI were analyzed for epidural, paravertebral, and intervertebral abscess formation, vertebral destruction, and endplate involvement. Pathogens were identified by CT-guided or intraoperative biopsy, intraoperative tissue sampling, or implant sonication.


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 511 - 517
1 May 2023
Petrie MJ Panchani S Al-Einzy M Partridge D Harrison TP Stockley I

Aims

The duration of systemic antibiotic treatment following first-stage revision surgery for periprosthetic joint infection (PJI) after total hip arthroplasty (THA) is contentious. Our philosophy is to perform an aggressive debridement, and to use a high local concentration of targeted antibiotics in cement beads and systemic prophylactic antibiotics alone. The aim of this study was to assess the success of this philosophy in the management of PJI of the hip using our two-stage protocol.

Methods

The study involved a retrospective review of our prospectively collected database from which we identified all patients who underwent an intended two-stage revision for PJI of the hip. All patients had a diagnosis of PJI according to the major criteria of the Musculoskeletal Infection Society (MSIS) 2013, a minimum five-year follow-up, and were assessed using the MSIS working group outcome-reporting tool. The outcomes were grouped into ‘successful’ or ‘unsuccessful’.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 10 - 10
17 Apr 2023
Constant C Moriarty T Pugliese B Arens D Zeiter S
Full Access

Orthopedic device-related infection (ODRI) preclinical models are widely used in translational research. Most models require induction of general anesthesia, which frequently results in hypothermia in rodents. This study aimed to evaluate the impact of peri anesthetic hypothermia in rodents on outcomes in preclinical orthopedic device-related infection studies. A retrospective analysis of all rodents that underwent surgery under general anesthesia to induce an ODRI model with inoculation of Staphylococcus epidermidis between 2016 and 2020 was conducted. A one-way multivariate analysis of covariance was used to determine the fixed effect of peri anesthetic hypothermia (hypothermic defined as rectal temperature <35°C) on the combined harvested tissue and implant colonies forming unit counts, and having controlled for the study groups including treatments received duration of surgery and anesthesia and study period. All animal experiments were approved by relevant ethical committee. A total of 127 rodents (102 rats and 25 mice) were enrolled in an ODRI and met the inclusion criteria. The mean lowest peri-anesthetic temperature was 35.3 ± 1.5 °C. The overall incidence of peri-anesthetic hypothermia was 41% and was less frequently reported in rats (34% in rats versus 68% in mice). Statistical analysis showed a significant effect of peri anesthetic hypothermia on the post-mortem combined colonies forming unit counts from the harvested tissue and implant(s) (p=0.01) when comparing normo- versus hypothermic rodents. Using Wilks’ Λ as a criterion to determine the contribution of independent variables to the model, peri-anesthetic hypothermia was the most significant, though still a weak predictor, of increased harvested colonies forming unit counts. Altogether, the data corroborate the concept that bacterial colonization is affected by abnormal body temperature during general anesthesia at the time of bacterial inoculation in rodents, which needs to be taken into consideration to decrease infection data variability and improve experimental reproducibility


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 18 - 18
10 Feb 2023
Foster A Boot W Stenger V D'Este M Jaiprakash A Crawford R Schuetz M Eglin D Zeiter S Richards R Moriarty T
Full Access

Local antimicrobial therapy is an integral aspect of treating orthopaedic device related infection (ODRI), which is conventionally administered via polymethylmethacrylate (PMMA) bone cement. PMMA, however, is limited by a suboptimal antibiotic release profile and a lack of biodegradability.

In this study, we compare the efficacy of PMMA versus an antibioticloaded hydrogel in a single- stage revision for chronic methicillin-resistant Staphylococcus aureus (MRSA) ODRI in

sheep. Antibiofilm activity of the antibiotic combination (gentamicin and vancomycin) was determined in vitro. Swiss alpine sheep underwent a single-stage revision of a tibial intramedullary nail with MRSA infection. Local gentamicin and vancomycin therapy was delivered via hydrogel or PMMA (n = 5 per group), in conjunction with systemic antibiotic therapy. In vivo observations included: local antibiotic tissue concentration, renal and liver function tests, and quantitative microbiology on tissues and hardware post-mortem.

There was a nonsignificant reduction in biofilm with an increasing antibiotic concentration in vitro (p = 0.12), confirming the antibiotic tolerance of the MRSA biofilm. In the in vivo study, four out of five sheep from each treatment group were culture negative. Antibiotic delivery via hydrogel resulted in 10–100 times greater local concentrations for the first 2–3 days compared with PMMA and were comparable thereafter. Systemic concentrations of gentamicin were minimal or undetectable in both groups, while renal and liver function tests were within normal limits.

This study shows that a single-stage revision with hydrogel or PMMA is equally effective, although the hydrogel offers certain practical benefits over PMMA, which make it an attractive proposition for clinical use.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 82 - 82
1 Dec 2022
Hitchon S Milner J Holdsworth D Willing R
Full Access

Revision surgeries for orthopaedic infections are done in two stages – one surgery to implant an antibiotic spacer to clear the infection and another to install a permanent implant. A permanent porous implant, that can be loaded with antibiotics and allow for single-stage revision surgery, will benefit patients and save healthcare resources. Gyroid structures can be constructed with high porosity, without stress concentrations that can develop in other period porous structures [1] [2]. The purpose of this research is to compare the resulting bone and prosthesis stress distributions when porous versus solid stems are implanted into three proximal humeri with varying bone densities, using finite element models (FEM). Porous humeral stems were constructed in a gyroid structure at porosities of 60%, 70%, and 80% using computer-aided design (CAD) software. These CAD models were analyzed using FEM (Abaqus) to look at the stress distributions within the proximal humerus and the stem components with loads and boundary conditions representing the arm actively maintained at 120˚ of flexion. The stem was assumed to be made of titanium (Ti6Al4V). Three different bone densities were investigated, representing a healthy, an osteopenic, and an osteoporotic humerus, with an average bone shape created using a statistical shape and density model (SSDM) based on 75 cadaveric shoulders (57 males and 18 females, 73 12 years) [3]. The Young's moduli (E) of the cortical and trabecular bones were defined on an element-by-element basis, with a minimum allowable E of 15 MPa. The Von Mises stress distributions in the bone and the stems were compared between different stem scenarios for each bone density model. A preliminary analysis shows an increase in stress values at the proximal-lateral region of the humerus when using the porous stems compared to the solid stem, which becomes more prominent as bone density decreases. With the exception of a few mesh dependent singularities, all three porous stems show stress distributions below the fatigue strength of Ti-6Al-4V (410 MPa) for this loading scenario when employed in the osteopenic and osteoporotic humeri [4]. The 80% porosity stem had a single strut exceeding the fatigue strength when employed in the healthy bone. The results of this study indicate that the more compliant nature of the porous stem geometries may allow for better load transmission through the proximal humeral bone, better matching the stress distributions of the intact bone and possibly mitigating stress-shielding effects. Importantly, this study also indicates that these porous stems have adequate strength for long-term use, as none were predicted to have catastrophic failure under the physiologically-relevant loads. Although these results are limited to a single boney geometry, it is based on the average shape of 75 shoulders and different bone densities are considered. Future work could leverage the shape model for probabilistic models that could explore the effect of stem porosity across a broader population. The development of these models are instrumental in determining if these structures are a viable solution to combatting orthopaedic implant infections


Bone & Joint Research
Vol. 11, Issue 12 | Pages 843 - 853
1 Dec 2022
Cai Y Huang C Chen X Chen Y Huang Z Zhang C Zhang W Fang X

Aims

This study aimed to explore the role of small colony variants (SCVs) of Staphylococcus aureus in intraosseous invasion and colonization in patients with periprosthetic joint infection (PJI).

Methods

A PJI diagnosis was made according to the MusculoSkeletal Infection Society (MSIS) for PJI. Bone and tissue samples were collected intraoperatively and the intracellular invasion and intraosseous colonization were detected. Transcriptomics of PJI samples were analyzed and verified by polymerase chain reaction (PCR).


Bone & Joint Research
Vol. 11, Issue 11 | Pages 835 - 842
17 Nov 2022
Wiesli MG Livio F Achermann Y Gautier E Wahl P

Aims. There is a considerable challenge in treating bone infections and orthopaedic device-associated infection (ODAI), partly due to impaired penetration of systemically administrated antibiotics at the site of infection. This may be circumvented by local drug administration. Knowledge of the release kinetics from any carrier material is essential for proper application. Ceftriaxone shows a particular constant release from calcium sulphate (CaSO. 4. ) in vitro, and is particularly effective against streptococci and a large portion of Gram-negative bacteria. We present the clinical release kinetics of ceftriaxone-loaded CaSO. 4. applied locally to treat ODAI. Methods. A total of 30 operations with ceftriaxone-loaded CaSO. 4. had been performed in 28 patients. Ceftriaxone was applied as a single local antibiotic in 21 operations and combined with vancomycin in eight operations, and in an additional operation with vancomycin and amphotericin B. Sampling of wound fluid was performed from drains or aspirations. Ceftriaxone concentrations were measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Results. A total of 37 wound fluid concentrations from 16 operations performed in 14 patients were collected. The ceftriaxone concentrations remained approximately within a range of 100 to 200 mg/l up to three weeks. The median concentration was 108.9 mg/l (interquartile range 98.8 to 142.5) within the first ten days. No systemic adverse reactions were observed. Conclusion. Our study highlights new clinical data of locally administered ceftriaxone with CaSO. 4. as carrier material. The near-constant release of ceftriaxone from CaSO. 4. observed in vitro could be confirmed in vivo. The concentrations remained below known local toxicity thresholds. Cite this article: Bone Joint Res 2022;11(11):835–842


Bone & Joint Research
Vol. 11, Issue 10 | Pages 700 - 714
4 Oct 2022
Li J Cheung W Chow SK Ip M Leung SYS Wong RMY

Aims

Biofilm-related infection is a major complication that occurs in orthopaedic surgery. Various treatments are available but efficacy to eradicate infections varies significantly. A systematic review was performed to evaluate therapeutic interventions combating biofilm-related infections on in vivo animal models.

Methods

Literature research was performed on PubMed and Embase databases. Keywords used for search criteria were “bone AND biofilm”. Information on the species of the animal model, bacterial strain, evaluation of biofilm and bone infection, complications, key findings on observations, prevention, and treatment of biofilm were extracted.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 51 - 51
1 Oct 2022
Azamgarhi T Scobie A Karunaharan N Mepham SO Mack D Vekaria K Crick K Chin SH Warren S
Full Access

Aim. There is a lack of data supporting the use of doxycycline as a single agent after removing infected orthopaedic metalwork. We evaluated the efficacy and safety of doxycycline compared with other single antibiotic regimens used at our specialist orthopaedic hospital. Methods. A retrospective observational study including all adult patients diagnosed with an orthopaedic metalwork infection due to staphylococci. All patients were managed with the removal of metalwork, and multiple intraoperative samples were sent for culture, followed by the administration of at least four weeks of oral antibiotics. Antibiotic selection was on the recommendation of an infection consultant. Infection outcome was assessed as the proportion of patients meeting the OVIVA Trial definition of definite failure at follow-up. The probability of definite failure for doxycycline and the alternatives group was estimated using the Kaplan-Meier survival method. All adverse drug reactions (ADR) during treatment were analysed. Results. Seventy-nine orthopaedic metalwork infections were identified between July 2017 and July 2021. Forty-four were prosthetic joints, and 35 were fracture-related metalwork. In 54 cases, the infecting organism was Staphylococcus aureus, and 25 were due to coagulase-negative staphylococci. Forty-four were treated with doxycycline 100mg 12 hourly, and 35 were treated with alternatives (flucloxacillin 1g 6-hourly n=21 and clindamycin 450mg 6-hourly n=14). Overall, 70 patients (88.6%) were infection-free after a median follow-up of 23 months (IQR, 19 – 44). 38 (82.3%) were infection-free in the doxycycline group compared with 32 (91.4%) patients treated with alternatives. Of the failures in the alternatives group, all 3 received flucloxacillin. Survival analysis showed no significant difference in time to treatment failure between doxycycline and alternative antibiotics. Eighteen patients experienced an ADR: 2 nausea, one rash and one vaginal candidiasis due to doxycycline. Four diarrhoea, one reflux, two rashes and one headache due to clindamycin; 1 nausea and five diarrhoea due to flucloxacillin. Four patients required discontinuation therapy, two due to clindamycin and two due to flucloxacillin. Conclusions. In our cohort of patients, doxycycline monotherapy was an effective and well-tolerated oral option for treating staphylococcal infection following debridement and removal of orthopaedic metalwork


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 34 - 34
1 Oct 2022
Dudareva M Corrigan R Hotchen A Muir R Scarborough C Kumin M Atkins B Scarborough M McNally M Collins G
Full Access

Aim. Smoking is known to impair wound healing and to increase the risk of peri-operative adverse events and is associated with orthopaedic infection and fracture non-union. Understanding the magnitude of the causal effect on orthopaedic infection recurrence may improve pre-operative patient counselling. Methods. Four prospectively-collected datasets including 1173 participants treated in European centres between 2003 and 2021, followed up to 12 months after surgery for clinically diagnosed orthopaedic infections, were included in logistic regression modelling with Inverse Probability of Treatment Weighting for current smoking status [1–3]. Host factors including age, gender and ASA score were included as potential confounding variables, interacting through surgical treatment as a collider variable in a pre-specified structural causal model informed by clinical experience. The definition of infection recurrence was identical and ascertained separately from baseline factors in three contributing cohorts. A subset of 669 participants with positive histology, microbiology or a sinus at the time of surgery, were analysed separately. Results. Participants were 64% male, with a median age of 60 years (range 18–95); 16% of participants experienced treatment failure by 12 months. 1171 of 1173 participants had current smoking status recorded. As expected for the European population, current smoking was less frequent in older participants (Table 1). There was no baseline association between Charlson score or ASA score and smoking status (p=0.9, p=1, Chi squared test). The estimated adjusted odds ratio for treatment failure at 12 months, resulting from current smoking at the time of surgery, was 1.37 for all participants (95% CI 0.75 to 2.50) and 1.53 for participants with recorded confirmatory criteria (95% CI 1.14 to 6.37). Conclusions. Smoking contributes to infection recurrence, particularly in people with unequivocal evidence of osteomyelitis or PJI. People awaiting surgery for orthopaedic infection should be supported to cease smoking, not only to reduce anaesthetic risk, but to improve treatment outcomes. Limitations of this study include unmeasured socioeconomic confounding and social desirability bias resulting in uncertainty in true smoking status, resulting in underestimated effect size


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 59 - 59
1 Oct 2022
Santos INM Kurihara MNL Santos FF Valiatti TB d. Silva JTP Pignatari ACC Salles M
Full Access

Aim. S. aureus and S. epidermidis remain the leading biofilm-forming agents causing orthopedic implant-associated infections (OIAI), but other coagulase-negative Staphylococcus (CoNS) with clinical importance is emerging. Besides, few studies have assessed specific genomic traits associated with patient outcome. This is a preliminary descriptive study of phenotypic and genomic features identified in clinical isolates of S. aureus and CoNS isolates recovered from OIAIs patients that progressed to treatment failure. Methods. Ten isolates were identified by matrix-time-of-flight laser-assisted desorption mass spectrometry (MALDI-TOF-MS) and tested for antibiotic susceptibility and biofilm formation. Genotypic characteristics, including, MLST (Multi Locus Sequence Typing), SCCmec typing, virulence and resistance genes were assessed by whole-genome sequencing (WGS) that was performed on an Illumina HiSeq 2500 platform. Bioinformatics analyzes were performed using CGE, PATRIC, VFDB, CARD RGI, SnapGene, BLAST, and PubMLST. S. aureus (215, 260 and 371) isolates belonged to CC5 (ST5 and ST105, spa type t002) and carried SCCmec type I (1B), II (2A) and V(5C2), respectively. Results. They carried multiple resistance genes, with all resistant to methicillin (MRSA), and harboured mecA, blaZ. S. aureus 215 and 371 carried ermA gene and multiple genes for aminoglycosides resistance including aph(3’)-III, ant(9)-Ia, and ant(4)-Ib, and for quinolones. S. aureus 260 also carried resistance genes for tetracycline, quinolones and trimethoprim (dfrC). All MRSA were strong biofilm producers harboring the complete icaADBC and icaR operon, and also carried multiple adhesion and toxin-related virulence genes. Seven CoNS isolates comprising five species (S. epidermidis, S. haemolyticus, S. sciuri, S. capitis and S. lugdunensis) were analyzed, with mecA gene detection in five isolates. S. haemolitycus (95) and S. lugdunensis were unable to form biofilm and did not harbor the complete icaADBCR operon. S. epidermidis (216, 403) and S. haemolyticus (53,95) isolates belonged to the ST2/CC2, ST183, ST9 and ST3, respectively. High variability of adhesion genes was detected, with atl, ebp, icaADBC operon and IS256 being the most common. Conclusions. In conclusion, this study provides insights into the phenotypic and genomic analysis of Staphylococci allowing elucidation of MRSA and CoNS specific features that are associated with treatment failure in OIAIs, including genes associated with biofilm production, and resistance to β-lactam and aminoglycosides