Advertisement for orthosearch.org.uk
Results 1 - 20 of 220
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1039 - 1043
1 Oct 2024
Luo TD Kayani B Magan A Haddad FS

The subject of noise in the operating theatre was recognized as early as 1972 and has been compared to noise levels on a busy highway. While noise-induced hearing loss in orthopaedic surgery specifically has been recognized as early as the 1990s, it remains poorly studied. As a result, there has been renewed focus in this occupational hazard. Noise level is typically measured in decibels (dB), whereas noise adjusted for human perception uses A-weighted sound levels and is expressed in dBA. Mean operating theatre noise levels range between 51 and 75 dBA, with peak levels between 80 and 119 dBA. The greatest sources of noise emanate from powered surgical instruments, which can exceed levels as high as 140 dBA. Newer technology, such as robotic-assisted systems, contribute a potential new source of noise. This article is a narrative review of the deleterious effects of prolonged noise exposure, including noise-induced hearing loss in the operating theatre team and the patient, intraoperative miscommunication, and increased cognitive load and stress, all of which impact the surgical team’s overall performance. Interventions to mitigate the effects of noise exposure include the use of quieter surgical equipment, the implementation of sound-absorbing personal protective equipment, or changes in communication protocols. Future research endeavours should use advanced research methods and embrace technological innovations to proactively mitigate the effects of operating theatre noise. Cite this article: Bone Joint J 2024;106-B(10):1039–1043


Bone & Joint 360
Vol. 13, Issue 5 | Pages 47 - 49
1 Oct 2024

The October 2024 Research Roundup360 looks at: Fracture risk among stroke survivors according to post-stroke disability status and stroke type; Noise-induced hearing loss: should surgeons be wearing ear protection during primary total joint replacement?; Intravenous dexamethasone in hip arthroscopy can enhance recovery; Patient-reported outcomes following periprosthetic joint infection of the hip and knee: a longitudinal, prospective observational study; When should surgery take place after weight loss?; Which type of surgery is the hardest physically and mentally?


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 887 - 891
1 Sep 2024
Whyte W Thomas AM

The critical relationship between airborne microbiological contamination in an operating theatre and surgical site infection (SSI) is well known. The aim of this annotation is to explain the scientific basis of using settle plates to audit the quality of air, and to provide information about the practicalities of using them for the purposes of clinical audit. The microbiological quality of the air in most guidance is defined by volumetric sampling, but this method is difficult for surgical departments to use on a routine basis. Settle plate sampling, which mimics the mechanism of deposition of airborne microbes onto open wounds and sterile instruments, is a good alternative method of assessing the quality of the air. Current practice is not to sample the air in an operating theatre during surgery, but to rely on testing the engineering systems which deliver the clean air. This is, however, not good practice and microbiological testing should be carried out routinely during operations as part of clinical audit.

Cite this article: Bone Joint J 2024;106-B(9):887–891.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 892 - 897
1 Sep 2024
Mancino F Fontalis A Kayani B Magan A Plastow R Haddad FS

Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation.

Cite this article: Bone Joint J 2024;106-B(9):892–897.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 751 - 758
1 Jul 2024
Yaxier N Zhang Y Song J Ning B

Aims

Given the possible radiation damage and inaccuracy of radiological investigations, particularly in children, ultrasound and superb microvascular imaging (SMI) may offer alternative methods of evaluating new bone formation when limb lengthening is undertaken in paediatric patients. The aim of this study was to assess the use of ultrasound combined with SMI in monitoring new bone formation during limb lengthening in children.

Methods

In this retrospective cohort study, ultrasound and radiograph examinations were performed every two weeks in 30 paediatric patients undergoing limb lengthening. Ultrasound was used to monitor new bone formation. The number of vertical vessels and the blood flow resistance index were compared with those from plain radiographs.


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 728 - 734
1 Jul 2024
Poppelaars MA van der Water L Koenraadt-van Oost I Boele van Hensbroek P van Bergen CJA

Aims

Paediatric fractures are highly prevalent and are most often treated with plaster. The application and removal of plaster is often an anxiety-inducing experience for children. Decreasing the anxiety level may improve the patients’ satisfaction and the quality of healthcare. Virtual reality (VR) has proven to effectively distract children and reduce their anxiety in other clinical settings, and it seems to have a similar effect during plaster treatment. This study aims to further investigate the effect of VR on the anxiety level of children with fractures who undergo plaster removal or replacement in the plaster room.

Methods

A randomized controlled trial was conducted. A total of 255 patients were included, aged five to 17 years, who needed plaster treatment for a fracture of the upper or lower limb. Randomization was stratified for age (five to 11 and 12 to 17 years). The intervention group was distracted with VR goggles and headphones during the plaster treatment, whereas the control group received standard care. As the primary outcome, the post-procedural level of anxiety was measured with the Child Fear Scale (CFS). Secondary outcomes included the children’s anxiety reduction (difference between CFS after and CFS before plaster procedure), numerical rating scale (NRS) pain, NRS satisfaction of the children and accompanying parents/guardians, and the children’s heart rates during the procedure. An independent-samples t-test and Mann-Whitney U test (depending on the data distribution) were used to analyze the data.


Bone & Joint Open
Vol. 5, Issue 4 | Pages 324 - 334
19 Apr 2024
Phelps EE Tutton E Costa ML Achten J Gibson P Perry DC

Aims

The aim of this study was to explore clinicians’ experience of a paediatric randomized controlled trial (RCT) comparing surgical reduction with non-surgical casting for displaced distal radius fractures.

Methods

Overall, 22 staff from 15 hospitals who participated in the RCT took part in an interview. Interviews were informed by phenomenology and analyzed using thematic analysis.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 154 - 161
1 Mar 2024
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 62 - 68
1 Jan 2024
Harris E Clement N MacLullich A Farrow L

Aims

Current levels of hip fracture morbidity contribute greatly to the overall burden on health and social care services. Given the anticipated ageing of the population over the coming decade, there is potential for this burden to increase further, although the exact scale of impact has not been identified in contemporary literature. We therefore set out to predict the future incidence of hip fracture and help inform appropriate service provision to maintain an adequate standard of care.

Methods

Historical data from the Scottish Hip Fracture Audit (2017 to 2021) were used to identify monthly incidence rates. Established time series forecasting techniques (Exponential Smoothing and Autoregressive Integrated Moving Average) were then used to predict the annual number of hip fractures from 2022 to 2029, including adjustment for predicted changes in national population demographics. Predicted differences in service-level outcomes (length of stay and discharge destination) were analyzed, including the associated financial cost of any changes.


Bone & Joint Open
Vol. 4, Issue 12 | Pages 948 - 956
15 Dec 2023
Vella-Baldacchino M Webb J Selvarajah B Chatha S Davies A Cobb JP Liddle AD

Aims

With up to 40% of patients having patellofemoral joint osteoarthritis (PFJ OA), the two arthroplasty options are to replace solely the patellofemoral joint via patellofemoral arthroplasty (PFA), or the entire knee via total knee arthroplasty (TKA). The aim of this study was to assess postoperative success of second-generation PFAs compared to TKAs for patients treated for PFJ OA using patient-reported outcome measures (PROMs) and domains deemed important by patients following a patient and public involvement meeting.

Methods

MEDLINE, EMBASE via OVID, CINAHL, and EBSCO were searched from inception to January 2022. Any study addressing surgical treatment of primary patellofemoral joint OA using second generation PFA and TKA in patients aged above 18 years with follow-up data of 30 days were included. Studies relating to OA secondary to trauma were excluded. ROB-2 and ROBINS-I bias tools were used.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 74 - 74
24 Nov 2023
Roussel-Gaillard T Bouchiat-Sarabi C Souche A Ginevra C Dauwalder O Benito Y Salord H Vandenesch F Laurent F
Full Access

Aim. While 16S rRNA PCR - Sanger sequencing has paved the way for the diagnosis of culture-negative bacterial infections, it does not provide the composition of polymicrobial infections. We aimed to evaluate the performance of the Nanopore-based 16S rRNA metagenomic approach using partial-length amplification of the gene, and to explore its feasibility and suitability as a routine diagnostic tool for bone and joint infections (BJI) in a clinical laboratory. Method. Sixty-two clinical samples from patients with BJI were sequenced on MinION* using the in-house partial amplification of the 16S rRNA gene. BJI were defined based on the ICM Philly 2018 and EBJIS 2021 criteria. Among the 62 samples, 16 (26%) were culture-positive, including 6 polymicrobial infections, and 46 (74%) were culture-negative from mono- and polymicrobial infections based on Sanger-sequencing. Contamination, background noise definition, bacterial identification, and time-effectiveness issues were addressed. Results. Results were obtained within one day. Setting a threshold at 1% of total reads overcame the background noise issue and eased interpretation of clinical samples. The partial 16S rRNA metagenomics approach had a greater sensitivity compared both to the culture method and the Sanger sequencing. All the 16 culture-positive samples were confirmed with the metagenomic sequencing. Bacterial DNA was detected in 32 culture-negative samples (70%), with pathogens consistent with BJI. The 14 Nanopore negative samples included 7 negative results confirmed after implementation of other molecular techniques and 7 false-negative MinION results: 3 Kingella kingae infections detected after targeted-PCR only, 2 Staphylococcus aureus infections and 2 Pseudomonas aeruginosa infections sterile on agar plate media and detected only after implementation of blood culture media, advocating for the very low inoculum. Conclusions. The results discriminated polymicrobial samples, and gave accurate bacterial identifications compared to Sanger-based results. They confirmed that Nanopore technology is user-friendly as well as cost- and time-effective. They also indicated that 16S rRNA targeted metagenomics is a suitable approach to be implemented for routine diagnosis of culture-negative samples in clinical laboratories. * Oxford Nanopore Technologies


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 59 - 59
17 Nov 2023
Yang I Buchanan R Al-Namnam N Li X Lucas M Simpson AH
Full Access

Abstract. Background. Ultrasonic cutting of bone boasts many advantages over alternatively powered surgical instruments, including but not limited to: elimination of swarf, reduced reaction forces, increased precision in cutting and reduced adjacent soft tissue damage, reduced post-operative complications such as bleeding and bone fracture, reduced healing time, reduced intra-operative noise and ease of handling. Despite ultrasonic cutting devices being well established in oral and maxillofacial surgery, applications in orthopaedic surgery are more niche and are not as well understood. The aim of this study was to investigate the cutting speed (mm/s) and cutting forces (N) of orthopaedic surgeons using a custom-designed state of the art ultrasonic cutting tool to cut fresh human bone samples. Methods. A setup based on the Robot Operating System (ROS) and AprilTag was designed to track and to record the real time position of the ultrasonic cutting tool in space. Synchronised load cell axial force readings of three separate orthopaedic surgeons during ultrasonic cutting were recorded. Each surgeon was asked to find a comfortable position that reflects as close as possible their clinical handling of a cutting instrument used in surgery, and to perform two cuts in each of three samples of human cortical bone. Bone samples were obtained following ethical approval from an institutional review board (ethics approval number: SR1342) and prior informed consent was obtained from all patients. Bone samples were extracted from the femoral neck region of three hip osteoarthritis patients. During cutting, surgeons were allowed a total cutting time of one minute and cutting was conducted using an ultrasonic tool with frequency of a 35kHz (35.7 µm peak to peak displacement amplitude) under constant irrigation using a MINIPULS® 3 Peristaltic pump (38 revolutions per minute) using Phosphate-Buffered Saline (PBS) at 25°C. From the recorded data, the average instantaneous cutting velocity was calculated and the maximum cutting force was identified. Results. All surgeons assumed a back-and-forth cutting motion, variation in the applied cutting force was observed. The average vertical cutting speed, axial cutting force and cutting depth across all surgeons and all samples was 1.64 mm/s, 1.91 N and 0.73 mm, respectively. While increasing the axial cutting force resulted in a deeper cut, overloading of the ultrasound transducer occurred when the tool advanced too quickly into the bone tissue during cutting. The exact force threshold, or the optimal speed at which the surgeon can maintain a constant force during cutting, requires further investigation. Conclusions. In this study, all surgeons cut using a back-and-forth cutting motion, with variation in the applied cutting force which may ultimately inform which clinical applications in orthopaedic engineering are most suitable for this technology. Applying too much force caused overloading of the ultrasound transducer, which is a limitation with the current cutting tool. The results from this study may facilitate the eventual uptake of ultrasonic cutting tools for application in orthopaedic surgery. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 12, Issue 11 | Pages 677 - 690
1 Nov 2023
Wang X Jiang W Pan K Tao L Zhu Y

Aims

Currently, the effect of drug treatment for osteoporosis is relatively poor, and the side effects are numerous and serious. Melatonin is a potential drug to improve bone mass in postmenopausal women. Unfortunately, the mechanism by which melatonin improves bone metabolism remains unclear. The aim of this study was to further investigate the potential mechanism of melatonin in the treatment of osteoporosis.

Methods

The effects of melatonin on mitochondrial apoptosis protein, bmal1 gene, and related pathway proteins of RAW264.7 (mouse mononuclear macrophage leukaemia cells) were analyzed by western blot. Cell Counting Kit-8 was used to evaluate the effect of melatonin on cell viability. Flow cytometry was used to evaluate the effect of melatonin on the apoptosis of RAW264.7 cells and mitochondrial membrane potential. A reactive oxygen species (ROS) detection kit was used to evaluate the level of ROS in osteoclast precursors. We used bmal1-small interfering RNAs (siRNAs) to downregulate the Bmal1 gene. We established a postmenopausal mouse model and verified the effect of melatonin on the bone mass of postmenopausal osteoporosis in mice via micro-CT. Bmal1 lentiviral activation particles were used to establish an in vitro model of overexpression of the bmal1 gene.


Bone & Joint Research
Vol. 12, Issue 10 | Pages 654 - 656
16 Oct 2023
Makaram NS Simpson AHRW

Cite this article: Bone Joint Res 2023;12(10):654–656.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 447 - 454
10 Jul 2023
Lisacek-Kiosoglous AB Powling AS Fontalis A Gabr A Mazomenos E Haddad FS

The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction.

Cite this article: Bone Joint Res 2023;12(7):447–454.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 71 - 71
23 Jun 2023
Sedel L
Full Access

Since 1977 we did implant ceramic on ceramic THR in younger and active population. In 1991 we published (JBJS B N°4) data's in a consecutive group of patients under 50 years of age. What about the same patients for more than 30 years? Eighty-six hips in 75 patients, 41 males 34 females, mean age 43 (18 to 50), mean weight 68 kg (36 to 100), Charnley class: 38 A, 28 (38 hips) B, 9 patients (10 hips) C. Sixty-six primary procedures, 20 revisions (18 failed arthroplasties: 6 THR, 5 resurfacing, four single cup, two hemiarthroplasty, one bipolar), one after acetabular fractures. Four hips previously infected. Eight Patients deceased (8 hips) prosthesis still in place, ten lost to follow-up before 2 years, eight hips in 8 patients were revised before the review, partially followed: from 2 to 20 years: 35, completely followed: 25 hips in 23 patients resuming in: No pain in 20, slight pain in 2, severe disability in 3 not related to the hip, no radiolucent lines in 22, radiolucent lines in 3, no osteolysis in 25. Revision for: early sepsis in one, socket loosening in 8 (3 revisions cases), femoral head fractures in 2: one extra small head (22mm) for Crowe 3 DDH, one fractured at 24 years. Inertness, stability related to fibrous tissue generation, no noise


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 85 - 85
23 Jun 2023
de Mello F Kadirkamanathan V Wilkinson JM
Full Access

Successful estimation of postoperative PROMs prior to a joint replacement surgery is important in deciding the best treatment option for a patient. However, estimation of the outcome is associated with substantial noise around individual prediction. Here, we test whether a classifier neural network can be used to simultaneously estimate postoperative PROMs and uncertainty better than current methods. We perform Oxford hip score (OHS) estimation using data collected by the NJR from 249,634 hip replacement surgeries performed from 2009 to 2018. The root mean square error (RMSE) of the various methods are compared to the standard deviation of outcome change distribution to measure the proportion of the total outcome variability that the model can capture. The area under the curve (AUC) for the probability of the change score being above a certain threshold was also plotted. The proposed classifier NN had a better or equivalent RMSE than all other currently used models. The threshold AUC shows similar results for all methods close to a change score of 20 but demonstrates better accuracy of the classifier neural network close to 0 change and greater than 30 change, showing that the full probability distribution performed by the classifier neural network resulted in a significant improvement in estimating the upper and lower quantiles of the change score probability distribution. Consequently, probabilistic estimation as performed by the classifier NN is the most adequate approach to this problem, since the final score has an important component of uncertainty. This study shows the importance of uncertainty estimation to accompany postoperative PROMs prediction and presents a clinically-meaningful method for personalised outcome that includes such uncertainty estimation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 10 - 10
7 Jun 2023
Mistry D Ahmed U Aujla R Aslam N D'Alessandro P Malik S
Full Access

Industries such as agriculture, construction and military have stringent rules about hearing protection due to the risk of noise induced hearing loss (NIHL). Due to the use of power tools, orthopaedic staff may be at risk of the same condition. The UK Health and Safety Executive (HSE) have clear standards as to what is deemed acceptable occupational noise levels on an A-weighted and C weighted scale. This review is aimed to assess evidence on noise exposure testing within Orthopaedic theatres to see if it exceeds the HSE regulations. A targeted search of online databases PUBMED and EMBASE was conducted using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) principles. This review was registered prospectively in PROSPERO. An eligibility criterion identifying clinical studies which assessed noise exposure for Orthopaedic staff in theatres were included. Noise exposure data was extracted from these studies and a comparison was made with A weighted and C weighted acceptable exposure levels as quoted in the HSE regulations. Fourteen papers were deemed eligible, which reviewed 133 Orthopaedic operations and 64 Orthopaedic instruments. In total, 61% (81 of 132) of Orthopaedic operations and 70% (45 of 64) of instruments exceeded the noise regulations on an A weighted scale. 22% (10 of 46) of operations exceeded the maximum C weighted peak acceptable noise level. Orthopaedic instruments and operations can exceed safe occupational noise levels. NHS Trusts have clear policies about noise exposure in the workplace but have yet to identify Orthopaedic theatres as a potential at risk area. Orthopaedic staff need education, monitoring and protection whereas Employers and Occupational Health should consider assessments to identify at risk staff in Orthopaedic theatres and offer preventative methods from NIHL


The Bone & Joint Journal
Vol. 105-B, Issue 6 | Pages 602 - 609
1 Jun 2023
Mistry D Ahmed U Aujla R Aslam N D’Alessandro P Malik S

Aims. In the UK, the agricultural, military, and construction sectors have stringent rules about the use of hearing protection due to the risk of noise-induced hearing loss. Orthopaedic staff may also be at risk due to the use of power tools. The UK Health and Safety Executive (HSE) have clear standards as to what are deemed acceptable occupational levels of noise on A-weighted and C-weighted scales. The aims of this review were to assess the current evidence on the testing of exposure to noise in orthopaedic operating theatres to see if it exceeds these regulations. Methods. A search of PubMed and EMBASE databases was conducted using PRISMA guidelines. The review was registered prospectively in PROSPERO. Studies which assessed the exposure to noise for orthopaedic staff in operating theatres were included. Data about the exposure to noise were extracted from these studies and compared with the A-weighted and C-weighted acceptable levels described in the HSE regulations. Results. A total of 15 studies were deemed eligible. These included a total of 386 orthopaedic operations and the use of 64 orthopaedic instruments. A total of 294 operations (76%) and 45 instruments (70%) exceeded the regulations on an A-weighted scale, and 22% (10 of 46) of operations exceeded the maximum C-weighted peak acceptable level of noise. Noise-induced hearing loss was reported in 28 of 55 orthopaedic staff members (50.9%). Conclusion. Safe levels of noise can be exceeded in orthopaedic operations, and when using orthopaedic instruments. Employers have clear policies about exposure to noise in the workplace but have yet to identify orthopaedic theatres as a potential at-risk area. Orthopaedic staff need education, monitoring, and protection, while employers should consider regular assessments of staff in orthopaedic theatres and offer methods to prevent noise-induced hearing loss. Cite this article: Bone Joint J 2023;105-B(6):602–609


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 123 - 123
11 Apr 2023
Ghaffari A Rahbek O Lauritsen R Kappel A Rasmussen J Kold S
Full Access

The tendency towards using inertial sensors for remote monitoring of the patients at home is increasing. One of the most important characteristics of the sensors is sampling rate. Higher sampling rate results in higher resolution of the sampled signal and lower amount of noise. However, higher sampling frequency comes with a cost. The main aim of our study was to determine the validity of measurements performed by low sampling frequency (12.5 Hz) accelerometers (SENS) in patients with knee osteoarthritis compared to standard sensor-based motion capture system (Xsens). We also determined the test-retest reliability of SENS accelerometers. Participants were patients with unilateral knee osteoarthritis. Gait analysis was performed simultaneously by using Xsens and SENS sensors during two repetitions of over-ground walking at a self-selected speed. Gait data from Xsens were used as an input for AnyBody musculoskeletal modeling software to measure the accelerations at the exact location of two defined virtual sensors in the model (VirtualSENS). After preprocessing, the signals from SENS and VirtualSENS were compared in different coordinate axes in time and frequency domains. ICC for SENS data from first and second trials were calculated to assess the repeatability of the measurements. We included 32 patients (18 females) with median age 70.1[48.1 – 85.4]. Mean height and weight of the patients were 173.2 ± 9.6 cm and 84.2 ± 14.7 kg respectively. The correlation between accelerations in time domain measured by SENS and VirtualSENS in different axes was r = 0.94 in y-axis (anteroposterior), r = 0.91 in x-axis (vertical), r = 0.83 in z-axis (mediolateral), and r = 0.89 for the magnitude vector. In frequency domain, the value and the power of fundamental frequencies (F. 0. ) of SENS and VirtualSENS signals demonstrated strong correlation (r = 0.98 and r = 0.99 respectively). The result of test-retest evaluation showed excellent repeatability for acceleration measurement by SENS sensors. ICC was between 0.89 to 0.94 for different coordinate axes. Low sampling frequency accelerometers can provide valid and reliable measurements especially for home monitoring of the patients, in which handling big data and sensors cost and battery lifetime are among important issues