Advertisement for orthosearch.org.uk
Results 1 - 20 of 84
Results per page:
The Bone & Joint Journal
Vol. 107-B, Issue 1 | Pages 124 - 132
1 Jan 2025
Thompson P Khattak M Joseph PJ Perry DC Cootes TF Lindner C

Aims

The aims of this study were to develop an automatic system capable of calculating four radiological measurements used in the diagnosis and monitoring of cerebral palsy (CP)-related hip disease, and to demonstrate that these measurements are sufficiently accurate to be used in clinical practice.

Methods

We developed a machine-learning system to automatically measure Reimer’s migration percentage (RMP), acetabular index (ACI), head shaft angle (HSA), and neck shaft angle (NSA). The system automatically locates points around the femoral head and acetabulum on pelvic radiographs, and uses these to calculate measurements. The system was evaluated on 1,650 pelvic radiographs of children with CP (682 females and 968 males, mean age 8.3 years (SD 4.5)). Each radiograph was manually measured by five clinical experts. Agreement between the manual clinical measurements and the automatic system was assessed by mean absolute deviation (MAD) from the mean manual measurement, type 1 and type 2 intraclass correlation coefficients (ICCs), and a linear mixed-effects model (LMM) for assessing bias.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 57 - 57
14 Nov 2024
Birkholtz F Eken M Boyes A Engelbrecht A
Full Access

Introduction. With advances in artificial intelligence, the use of computer-aided detection and diagnosis in clinical imaging is gaining traction. Typically, very large datasets are required to train machine-learning models, potentially limiting use of this technology when only small datasets are available. This study investigated whether pretraining of fracture detection models on large, existing datasets could improve the performance of the model when locating and classifying wrist fractures in a small X-ray image dataset. This concept is termed “transfer learning”. Method. Firstly, three detection models, namely, the faster region-based convolutional neural network (faster R-CNN), you only look once version eight (YOLOv8), and RetinaNet, were pretrained using the large, freely available dataset, common objects in context (COCO) (330000 images). Secondly, these models were pretrained using an open-source wrist X-ray dataset called “Graz Paediatric Wrist Digital X-rays” (GRAZPEDWRI-DX) on a (1) fracture detection dataset (20327 images) and (2) fracture location and classification dataset (14390 images). An orthopaedic surgeon classified the small available dataset of 776 distal radius X-rays (Arbeidsgmeischaft für Osteosynthesefragen Foundation / Orthopaedic Trauma Association; AO/OTA), on which the models were tested. Result. Detection models without pre-training on the large datasets were the least precise when tested on the small distal radius dataset. The model with the best accuracy to detect and classify wrist fractures was the YOLOv8 model pretrained on the GRAZPEDWRI-DX fracture detection dataset (mean average precision at intersection over union of 50=59.7%). This model showed up to 33.6% improved detection precision compared to the same models with no pre-training. Conclusion. Optimisation of machine-learning models can be challenging when only relatively small datasets are available. The findings of this study support the potential of transfer learning from large datasets to improve model performance in smaller datasets. This is encouraging for wider application of machine-learning technology in medical imaging evaluation, including less common orthopaedic pathologies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 17 - 17
14 Nov 2024
Kjærgaard K Ding M Mansourvar M
Full Access

Introduction. Experimental bone research often generates large amounts of histology and histomorphometry data, and the analysis of these data can be time-consuming and trivial. Machine learning offers a viable alternative to manual analysis for measuring e.g. bone volume versus total volume. The objective was to develop a neural network for image segmentation, and to assess the accuracy of this network when applied to ectopic bone formation samples compared to a ground truth. Method. Thirteen tissue slides totaling 114 megapixels of ectopic bone formation were selected for model building. Slides were split into training, validation, and test data, with the test data reserved and only used for the final model assessment. We developed a neural network resembling U-Net that takes 512×512 pixel tiles. To improve model robustness, images were augmented online during training. The network was trained for 3 days on a NVidia Tesla K80 provided by a free online learning platform against ground truth masks annotated by an experienced researcher. Result. During training, the validation accuracy improved and stabilised at approx. 95%. The test accuracy was 96.1 %. Conclusion. Most experiments using ectopic bone formation will yield an inter-observer or inter-method variance of far more than 5%, so the current approach may be a valid and feasible technique for automated image segmentation for large datasets. More data or a consensus-based ground truth may improve training stability and validation accuracy. The code and data of this project are available upon request and will be available online as part of our publication


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1348 - 1360
1 Nov 2024
Spek RWA Smith WJ Sverdlov M Broos S Zhao Y Liao Z Verjans JW Prijs J To M Åberg H Chiri W IJpma FFA Jadav B White J Bain GI Jutte PC van den Bekerom MPJ Jaarsma RL Doornberg JN

Aims. The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs. Methods. The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%). Results. For detection and classification, the algorithm was trained on 1,709 radiographs (n = 803), tested on 567 radiographs (n = 244), and subsequently externally validated on 535 radiographs (n = 227). For characterization, healthy shoulders and glenohumeral dislocation were excluded. The overall accuracy for fracture detection was 94% (area under the receiver operating characteristic curve (AUC) = 0.98) and for classification 78% (AUC 0.68 to 0.93). Accuracy to detect greater tuberosity fracture displacement ≥ 1 cm was 35.0% (AUC 0.57). The CNN did not recognize NSAs ≤ 100° (AUC 0.42), nor fractures with ≥ 75% shaft translation (AUC 0.51 to 0.53), or with ≥ 15% articular involvement (AUC 0.48 to 0.49). For all objectives, the model’s performance on the external dataset showed similar accuracy levels. Conclusion. CNNs proficiently rule out proximal humerus fractures on plain radiographs. Despite rigorous training methodology based on CT imaging with multi-rater consensus to serve as the reference standard, artificial intelligence-driven classification is insufficient for clinical implementation. The CNN exhibited poor diagnostic ability to detect greater tuberosity displacement ≥ 1 cm and failed to identify NSAs ≤ 100°, shaft translations, or articular fractures. Cite this article: Bone Joint J 2024;106-B(11):1348–1360


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1216 - 1222
1 Nov 2024
Castagno S Gompels B Strangmark E Robertson-Waters E Birch M van der Schaar M McCaskie AW

Aims

Machine learning (ML), a branch of artificial intelligence that uses algorithms to learn from data and make predictions, offers a pathway towards more personalized and tailored surgical treatments. This approach is particularly relevant to prevalent joint diseases such as osteoarthritis (OA). In contrast to end-stage disease, where joint arthroplasty provides excellent results, early stages of OA currently lack effective therapies to halt or reverse progression. Accurate prediction of OA progression is crucial if timely interventions are to be developed, to enhance patient care and optimize the design of clinical trials.

Methods

A systematic review was conducted in accordance with PRISMA guidelines. We searched MEDLINE and Embase on 5 May 2024 for studies utilizing ML to predict OA progression. Titles and abstracts were independently screened, followed by full-text reviews for studies that met the eligibility criteria. Key information was extracted and synthesized for analysis, including types of data (such as clinical, radiological, or biochemical), definitions of OA progression, ML algorithms, validation methods, and outcome measures.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1231 - 1239
1 Nov 2024
Tzanetis P Fluit R de Souza K Robertson S Koopman B Verdonschot N

Aims

The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population.

Methods

We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific musculoskeletal models of the pre-diseased knee. Subsequently, implantations were simulated using the MA method, and a previously developed optimization technique was employed to find the optimal implant position that minimized the root mean square deviation between pre-diseased and postoperative ligament strains and kinematics.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 588 - 595
17 Oct 2024
Breu R Avelar C Bertalan Z Grillari J Redl H Ljuhar R Quadlbauer S Hausner T

Aims. The aim of this study was to create artificial intelligence (AI) software with the purpose of providing a second opinion to physicians to support distal radius fracture (DRF) detection, and to compare the accuracy of fracture detection of physicians with and without software support. Methods. The dataset consisted of 26,121 anonymized anterior-posterior (AP) and lateral standard view radiographs of the wrist, with and without DRF. The convolutional neural network (CNN) model was trained to detect the presence of a DRF by comparing the radiographs containing a fracture to the inconspicuous ones. A total of 11 physicians (six surgeons in training and five hand surgeons) assessed 200 pairs of randomly selected digital radiographs of the wrist (AP and lateral) for the presence of a DRF. The same images were first evaluated without, and then with, the support of the CNN model, and the diagnostic accuracy of the two methods was compared. Results. At the time of the study, the CNN model showed an area under the receiver operating curve of 0.97. AI assistance improved the physician’s sensitivity (correct fracture detection) from 80% to 87%, and the specificity (correct fracture exclusion) from 91% to 95%. The overall error rate (combined false positive and false negative) was reduced from 14% without AI to 9% with AI. Conclusion. The use of a CNN model as a second opinion can improve the diagnostic accuracy of DRF detection in the study setting. Cite this article: Bone Joint Res 2024;13(10):588–595


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims. Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. Methods. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy. Results. We identified nine predictors from an analysis of baseline spinopelvic characteristics and surgical planning parameters. Using fivefold cross-validation, the LGBM achieved 70.2% impingement prediction accuracy. With impingement data, the LGBM estimated direction with 85% accuracy, while the support vector machine (SVM) determined impingement type with 72.9% accuracy. After integrating imaging data with a multilayer perceptron (tabular) and a convolutional neural network (radiograph), the LGBM’s prediction was 68.1%. Both combined and LGBM-only had similar impingement direction prediction rates (around 84.5%). Conclusion. This study is a pioneering effort in leveraging AI for impingement prediction in THA, utilizing a comprehensive, real-world clinical dataset. Our machine-learning algorithm demonstrated promising accuracy in predicting impingement, its type, and direction. While the addition of imaging data to our deep-learning algorithm did not boost accuracy, the potential for refined annotations, such as landmark markings, offers avenues for future enhancement. Prior to clinical integration, external validation and larger-scale testing of this algorithm are essential. Cite this article: Bone Jt Open 2024;5(8):671–680


The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 688 - 695
1 Jul 2024
Farrow L Zhong M Anderson L

Aims

To examine whether natural language processing (NLP) using a clinically based large language model (LLM) could be used to predict patient selection for total hip or total knee arthroplasty (THA/TKA) from routinely available free-text radiology reports.

Methods

Data pre-processing and analyses were conducted according to the Artificial intelligence to Revolutionize the patient Care pathway in Hip and knEe aRthroplastY (ARCHERY) project protocol. This included use of de-identified Scottish regional clinical data of patients referred for consideration of THA/TKA, held in a secure data environment designed for artificial intelligence (AI) inference. Only preoperative radiology reports were included. NLP algorithms were based on the freely available GatorTron model, a LLM trained on over 82 billion words of de-identified clinical text. Two inference tasks were performed: assessment after model-fine tuning (50 Epochs and three cycles of k-fold cross validation), and external validation.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 294 - 305
17 Jun 2024
Yang P He W Yang W Jiang L Lin T Sun W Zhang Q Bai X Sun W Guo D

Aims

In this study, we aimed to visualize the spatial distribution characteristics of femoral head necrosis using a novel measurement method.

Methods

We retrospectively collected CT imaging data of 108 hips with non-traumatic osteonecrosis of the femoral head from 76 consecutive patients (mean age 34.3 years (SD 8.1), 56.58% male (n = 43)) in two clinical centres. The femoral head was divided into 288 standard units (based on the orientation of units within the femoral head, designated as N[Superior], S[Inferior], E[Anterior], and W[Posterior]) using a new measurement system called the longitude and latitude division system (LLDS). A computer-aided design (CAD) measurement tool was also developed to visualize the measurement of the spatial location of necrotic lesions in CT images. Two orthopaedic surgeons independently performed measurements, and the results were used to draw 2D and 3D heat maps of spatial distribution of necrotic lesions in the femoral head, and for statistical analysis.


Bone & Joint 360
Vol. 13, Issue 3 | Pages 18 - 20
3 Jun 2024

The June 2024 Hip & Pelvis Roundup360 looks at: Machine learning did not outperform conventional competing risk modelling to predict revision arthroplasty; Unravelling the risks: incidence and reoperation rates for femoral fractures post-total hip arthroplasty; Spinal versus general anaesthesia for hip arthroscopy: a COVID-19 pandemic- and opioid epidemic-driven study; Development and validation of a deep-learning model to predict total hip arthroplasty on radiographs; Ambulatory centres lead in same-day hip and knee arthroplasty success; Exploring the impact of smokeless tobacco on total hip arthroplasty outcomes: a deeper dive into postoperative complications.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 243 - 251
25 Mar 2024
Wan HS Wong DLL To CS Meng N Zhang T Cheung JPY

Aims

This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis.

Methods

A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included “adolescent idiopathic scoliosis”,“3D”, and “progression”. The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included.


Bone & Joint Open
Vol. 5, Issue 2 | Pages 139 - 146
15 Feb 2024
Wright BM Bodnar MS Moore AD Maseda MC Kucharik MP Diaz CC Schmidt CM Mir HR

Aims

While internet search engines have been the primary information source for patients’ questions, artificial intelligence large language models like ChatGPT are trending towards becoming the new primary source. The purpose of this study was to determine if ChatGPT can answer patient questions about total hip (THA) and knee arthroplasty (TKA) with consistent accuracy, comprehensiveness, and easy readability.

Methods

We posed the 20 most Google-searched questions about THA and TKA, plus ten additional postoperative questions, to ChatGPT. Each question was asked twice to evaluate for consistency in quality. Following each response, we responded with, “Please explain so it is easier to understand,” to evaluate ChatGPT’s ability to reduce response reading grade level, measured as Flesch-Kincaid Grade Level (FKGL). Five resident physicians rated the 120 responses on 1 to 5 accuracy and comprehensiveness scales. Additionally, they answered a “yes” or “no” question regarding acceptability. Mean scores were calculated for each question, and responses were deemed acceptable if ≥ four raters answered “yes.”


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims

Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort.

Methods

Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 9 - 19
16 Jan 2024
Dijkstra H van de Kuit A de Groot TM Canta O Groot OQ Oosterhoff JH Doornberg JN

Aims

Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool.

Methods

A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 2 - 2
2 Jan 2024
Ditmer S Dwenger N Jensen L Ghaffari A Rahbek O
Full Access

The most important outcome predictor of Legg-Calvé-Perthes disease (LCPD) is the shape of the healed femoral head. However, the deformity of the femoral head is currently evaluated by non-reproducible, categorical, and qualitative classifications. In this regard, recent advances in computer vision might provide the opportunity to automatically detect and delineate the outlines of bone in radiographic images for calculating a continuous measure of femoral head deformity. This study aimed to construct a pipeline for accurately detecting and delineating the proximal femur in radiographs of LCPD patients employing existing algorithms. To detect the proximal femur, the pretrained stateof-the-art object detection model, YOLOv5, was trained on 1580 manually annotated radiographs, validated on 338 radiographs, and tested on 338 radiographs. Additionally, 200 radiographs of shoulders and chests were added to the dataset to make the model more robust to false positives and increase generalizability. The convolutional neural network architecture, U-Net, was then employed to segment the detected proximal femur. The network was trained on 80 manually annotated radiographs using real-time data augmentation to increase the number of training images and enhance the generalizability of the segmentation model. The network was validated on 60 radiographs and tested on 60 radiographs. The object detection model achieved a mean Average Precision (mAP) of 0.998 using an Intersection over Union (IoU) threshold of 0.5, and a mAP of 0.712 over IoU thresholds of 0.5 to 0.95 on the test set. The segmentation model achieved an accuracy score of 0.912, a Dice Coefficient of 0.937, and a binary IoU score of 0.854 on the test set. The proposed fully automatic proximal femur detection and segmentation system provides a promising method for accurately detecting and delineating the proximal femoral bone contour in radiographic images, which is necessary for further image analysis


The Bone & Joint Journal
Vol. 106-B, Issue 1 | Pages 3 - 5
1 Jan 2024
Fontalis A Haddad FS


Bone & Joint 360
Vol. 12, Issue 6 | Pages 17 - 20
1 Dec 2023

The December 2023 Hip & Pelvis Roundup360 looks at: Early hip fracture surgery is safe for patients on direct oral anticoagulants; Time to return to work by occupational class after total hip or knee arthroplasty; Is there a consensus on air travel following hip and knee arthroplasty?; Predicting whether patients will achieve minimal clinically important differences following hip or knee arthroplasty; High-dose dual-antibiotic-loaded cement for hip hemiarthroplasty in the UK (WHiTE 8): a randomized controlled trial; Vitamin E – a positive thing in your poly?; Hydroxapatite-coated femoral stems: is there a difference in fixation?


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 63 - 63
17 Nov 2023
Bicer M Phillips AT Melis A McGregor A Modenese L
Full Access

Abstract. OBJECTIVES. Application of deep learning approaches to marker trajectories and ground reaction forces (mocap data), is often hampered by small datasets. Enlarging dataset size is possible using some simple numerical approaches, although these may not be suited to preserving the physiological relevance of mocap data. We propose augmenting mocap data using a deep learning architecture called “generative adversarial networks” (GANs). We demonstrate appropriate use of GANs can capture variations of walking patterns due to subject- and task-specific conditions (mass, leg length, age, gender and walking speed), which significantly affect walking kinematics and kinetics, resulting in augmented datasets amenable to deep learning analysis approaches. METHODS. A publicly available (. https://www.nature.com/articles/s41597-019-0124-4. ) gait dataset (733 trials, 21 women and 25 men, 37.2 ± 13.0 years, 1.74 ± 0.09 m, 72.0 ± 11.4 kg, walking speeds ranging from 0.18 m/s to 2.04 m/s) was used as the experimental dataset. The GAN comprised three neural networks: an encoder, a decoder, and a discriminator. The encoder compressed experimental data into a fixed-length vector, while the decoder transformed the encoder's output vector and a condition vector (containing information about the subject and trial) into mocap data. The discriminator distinguished between the encoded experimental data from randomly sampled vectors of the same size. By training these networks jointly using the experimental dataset, the generator (decoder) could generate synthetic data respecting specified conditions from randomly sampled vectors. Synthetic mocap data and lower limb joint angles were generated and compared to the experimental data, by identifying the statistically significant differences across the gait cycle for a randomly selected subset of the experimental data from 5 female subjects (73 trials, aged 26–40, weighing 57–74 kg, with leg lengths between 868–931 mm, and walking speeds ranging from 0.81–1.68 m/s). By conducting these comparisons for this subset, we aimed to assess the synthetic data generated using multiple conditions. RESULTS. We visually inspected the synthetic trials to ensure that they appeared realistic. The statistical comparison revealed that, on average, only 2.5% of the gait cycle showed significantly differences in the joint angles of the two data groups. Additionally, the synthetic ground reaction forces deviated from the experimental data distribution for an average of 2.9% of the gait cycle. CONCLUSIONS. We introduced a novel approach for generating synthetic mocap data of human walking based on the conditions that influence walking patterns. The synthetic data closely followed the trends observed in the experimental data, also in the literature, suggesting that our approach can augment mocap datasets considering multiple conditions, an approach unfeasible in previous work. Creation of large, augmented datasets allows the application of other deep learning approaches, with the potential to generate realistic mocap data from limited and non-lab-based data. Our method could also enhance data sharing since synthetic data does not raise ethical concerns. You can generate and download virtual gait data using our GAN approach from . https://thisgaitdoesnotexist.streamlit.app/. . Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project