Advertisement for orthosearch.org.uk
Results 1 - 20 of 178
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 97 - 97
14 Nov 2024
Ji E Leijsten L Bouma JW Rouchon A Maggio ND Banfi A Osch GV Farrell E lolli A
Full Access

Introduction. Endochondral ossification (EO) is the process of bone development via a cartilage template. It involves multiple stages, including chondrogenesis, mineralisation and angiogenesis. Importantly, how cartilage mineralisation affects angiogenesis during EO is not fully understood. Here we aimed to develop a new in vitro co-culture model to recapitulate and study the interaction between mineralised cartilage generated from human mesenchymal stromal cells (hMSCs) and microvascular networks. Method. Chondrogenic hMSC pellets were generated by culture with transforming growth factor (TGF)-β3. For mineralised pellets, β-glycerophosphate (BGP) was added from day 7 and TGF-β3 was withdrawn on day 14. Conditioned medium (CM) from the pellets was used to evaluate the effect on human umbilical vein endothelial cells (HUVECs) in migration, proliferation and tube formation assays. To perform direct co-cultures, pellets were embedded in fibrin hydrogels containing vessel-forming cells (HUVECs, adipose stromal cells) for 10 days with BGP to induce mineralisation. The pellets and hydrogels were characterised by immunohistochemistry and confocal imaging. Result. The CM from d14 chondrogenic or mineralised pellets significantly stimulated HUVEC migration and proliferation, as well as in vitro vascular network formation. When CM from pellets subjected to prolonged mineralisation (d28) was used, these effects were strongly reduced. When chondrogenic and mineralised pellets were directly co-cultured with vessel-forming cells in fibrin hydrogels, the cartilage matrix (collagen type II/X stainings) and the mineral deposition (von Kossa staining) were well preserved. Confocal imaging analyses demonstrated the formation of microvascular networks with well-formed lumina. Importantly, more microvascular structures were formed in the proximity of chondrogenic pellets than mineralized pellets. Conclusion. The angiogenic properties of tissue engineered cartilage are significantly reduced upon prolonged mineralisation. We developed a 3D co-culture model to study the role of angiogenesis in endochondral bone formation, which can have applications in disease modelling studies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_11 | Pages 4 - 4
4 Jun 2024
Stewart S Darwood A Higgins C Masouros S Ramasamy A
Full Access

Introduction. Fusion represents an effective treatment option in patients affected by end-stage arthritis. To minimise the risk of non-union following fusion, biological preparations such as bone marrow aspirate concentrate (BMAC) are commonly used intra-operatively. Mechanotransduction represents an emerging field of research whereby physical stimuli can be used to modulate the behaviour and differentiation of cells. Blast waves (a subtype of shock waves) are one such physical stimulus. The aim of this study was to investigate whether the osteogenic potential of BMAC can be enhanced using a blast wave, and thus improve its efficacy in fusion surgery. Methods. Human BMAC samples were obtained from three healthy patients and exposed to a single blast wave (peak overpressure= 50psi), before being placed in a suspension of mesenchymal stem cells, to represent the biological environment of the fusion site. Three test groups were used: MSC (the experimental control); MSC + BMAC; MSC + BMAC + blast wave. Calcium mineralisation assays were performed on the MSCs on Day 7 and 14 to assess for osteoblastic transformation. Results. Calcium mineralisation on Day 7 was significantly increased in the MSC + BMAC group compared to the MSC group (mean percentage change 42.12 vs 0.0, p=0.012). The MSC + BMAC + blast wave group also demonstrated significantly increased levels compared to the MSC + BMAC group (84.56 vs. 42.14, p = 0.039). The difference in calcium mineralisation between the MSC and MSC + BMAC + blast wave groups was strongly significant (0.00 vs. 84.56, p = 0.003). Conclusion. Exposure of BMAC to a single blast wave enhances its osteogenic potential. This represents a potential novel way to improve healing following fusion surgery and reduce the rates of non-union


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 144 - 144
2 Jan 2024
Anghileri G DeVoogt W Seinen C Peacock B Vader P Martin-Fabiani I Davies O
Full Access

Matrix-bound vesicles (MBVs) are embedded within osteoid and function as the site of initial mineral formation. However, they remain insufficiently characterised in terms of biogenesis, composition and function while their relationship with secreted culture medium EVs (sEVs) such as exosomes remains debated. We aimed to define the biogenesis and pro-mineralisation capacity of MBVs and sEVs to understand their potential in regenerative orthopaedics. sEVs and MBVs isolated from conditioned medium (differential ultracentrifugation) and ECM (collagenase digestion and differential ultracentrifugation) of mineralising MC3T3 pre-osteoblast and human bone marrow MSC cultures were characterised by nanoparticle tracking analysis, western blotting, nano-flow cytometry, super resolution microscopy (ONI) and TEM. Immunoprecipitated populations positive for alkaline phosphatase (ALP), a putative marker of mineralisation capacity, were also characterised. Collagen binding efficiency was evaluated using MemGlow staining. Results reported were comparative across both cell lines. Western blots indicated MBV fractions were positive for markers of endosomal biogenesis (CD9, CD81, ALIX, TSG101) and pro-mineralising proteins (ALP, Pit1, Annexin II, Annexin V), with Annexin V and CD9 present in immunoprecipitated ALP-positive fractions. MBVs were significantly larger than sEVs (p<0.05) and contained a higher amount of ALP (p<0.05) with a significant increase from day 7 to day 14 of cellular mineralisation (p<0.05). This mirrored the pattern of electron-dense vesicles seen via TEM. Super resolution single vesicle analysis revealed for the first-time co-expression of ALP with markers of endosomal biogenesis (CD9, CD63, CD81, ALIX) and Annexin II in both vesicle types, with higher co-expression percentage in MBVs than sEVs. MBVs also exhibited preferential collagen binding. Advanced imaging methods demonstrated that contrary to opinions in the field, MBVs appear to possess exosomal markers and may arise via endosomal biogenesis. However, it was evident that a higher proportion of MBVs possessed machinery to induce mineralisation and were enriched in mineral-dense material


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 52 - 52
17 Nov 2023
Jones R Bowd J Gilbert S Wilson C Whatling G Jonkers I Holt C Mason D
Full Access

Abstract. OBJECTIVE. Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity. 1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain. 2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively. 3. and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion. 4. Sema3A is also differentially expressed in human OA bone. 5. HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain. METHODS. Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific musculoskeletal model. 6. of gait estimating joint contact location, pressure, forces, and medial-lateral condyle load distribution in a published data set included in analyses. Data analysis was performed using Pearson's correlation matrices and principal component analyses. Principal Components (PCs) with eigenvalues greater than 1 were analysed. RESULTS. PC1 (32.94% of variation) and PC2 (25.79% of variation) from PCA analysis and correlation matrices separated patients according to correlated clusters of established inflammatory markers of OA pain and progression (IL6/IL8, r=0.754, p<0.001) and anti-inflammatory mediators (IL4/IL10, r=0.469, p=0.005). Bone turnover marker ALP was positively associated with KL grade (r=0.815, p=0.002) and negatively associated with IL10 (r=−0.402, p=0.018) and first peak knee loading pressures (r=−0.688, p=0.019). RANKL was positively associated with IL4 (r=0.489, p=0.003). Synovial fluid Sema3A concentrations showed separate clustering from all OA progression markers and was inversely correlated with TNF-α (r=−0.423, p=0.022) in HTO patients. Sema3A was significantly inversely correlated with total predicted force in the medial joint compartment (r=−0.621, p=0.041), mean (r=−0.63, p=0.038) and maximum (r=−0.613, p=0.045) calculated medial compartment joint pressures during the first phase and mean (r=−0.618, p=0.043) and maximum (r=−0.641, p=0.034) medial compartment joint pressures during midstance outputs of patient-specific musculoskeletal model. CONCLUSIONS. This study shows joint inflammatory status and mechanical overloading influence subchondral bone-remodelling. Synovial Sema3A concentrations are inversely correlated to patient-specific musculoskeletal model estimations of pathological medial overloading. This study reveals Sema3A as a biological mediator with capacity to induce OA pain and disease progression that is directly regulated by gait mechanical loading. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 6 - 6
11 Apr 2023
Kronenberg D Everding J Wendler L Brand M Timmen M Stange R
Full Access

Integrin α2β1 is one of the major transmembrane receptors for fibrillary collagen. In native bone we could show that the absence of this protein led to a protective effect against age-related osteoporosis. The objective of this study was to elucidate the effects of integrin α2β1 deficiency on fracture repair and its underlying mechanisms. Standardised femoral fractures were stabilised by an intramedullary nail in 12 week old female C57Bl/6J mice (wild type and integrin α2. -/-. ). After 7, 14 and 28 days mice were sacrificed. Dissected femura were subjected to µCT and histological analyses. To evaluate the biomechanical properties, 28-day-healed femura were tested in a torsional testing device. Masson goldner staining, Alizarin blue, IHC and IF staining were performed on paraffin slices. Blood serum of the animals were measured by ELISA for BMP-2. Primary osteoblasts were analysed by in/on-cell western technology and qRT-PCR. Integrin α2β1 deficient animals showed earlier transition from cartilaginous callus to mineralized callus during fracture repair. The shift from chondrocytes over hypertrophic chondrocytes to bone-forming osteoblasts was accelerated. Collagen production was increased in mutant fracture callus. Serum levels of BMP-2 were increased in healing KO mice. Isolated integrin deficient osteoblast presented an earlier expression and production of active BMP-2 during the differentiation, which led to earlier mineralisation. Biomechanical testing showed no differences between wild-type and mutant bones. Knockout of integrin α2β1 leads to a beneficial outcome for fracture repair. Callus maturation is accelerated, leading to faster recovery, accompanied by an increased generation of extra-cellular matrix material. Biomechanical properties are not diminished by this accelerated healing. The underlying mechanism is driven by an earlier availability of BMP-2, one main effectors for bone development. Local inhibition of integrin α2β1 is therefore a promising target to accelerate fracture repair, especially in patients with retarded healing


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 41 - 41
11 Apr 2023
Deegan A Lawlor L Yang X Yang Y
Full Access

Our previous research has demonstrated that minor adjustments to in vitro cellular aggregation parameters, i.e. alterations to aggregate size, can influence temporal and spatial mineral depositions within maturing bone cell nodules. What remains unclear, however, is how aggregate size might affect mineralisation within said nodules over long-term in vivo culture. In this study, we used an osteoblast cell line, MLO-A5, and a primary cell culture, mesenchymal stem cells (MSC), to compare small (approximately 80 µm) with large (approximately 220 µm) cellular aggregates for potential bone nodule development after 8 weeks of culturing in a mouse model (n = 4 each group). In total, 30 chambers were implanted into the intra-peritoneal cavity of 20 male, immunocompromised mice (MF1-Nu/Nu, 4 – 5 weeks old). Nine small or three large aggregates were used per chamber. Neoveil mesh was seeded directly with 2 × 10. 3. cells for monolayer control. At 8 weeks, the animals were euthanised and chambers fixed with formalin. Aggregate integrity and extracellular material growth were assessed via light microscopy and the potential mineralisation was assessed via micro-CT. Many large aggregates appeared to disintegrate, whilst the small aggregates maintained their form and produced additional extracellular material with increased sizes. Both MLO-A5 cells and MSC cells saw similar results. Interestingly, however, the MSCs were also seen to produce a significantly higher volume of dense material compared to the MLO-A5 cells from micro-CT analysis. Overall, a critical cell aggregate size appeared to exist balancing optimal tissue growth with oxygen diffusion, and cell source may influence differentiation pathway despite similar experimental parameters. The MSCs, for example, were likely producing bone via the endochondral ossification pathway, whilst the matured bone cells, MLO-A5 cells, were likely producing bone via the intramembranous ossification pathway


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 2 - 2
11 Apr 2023
Kronenberg D Everding J Moali C Legoff S Stange R
Full Access

BMP-1 is the major procollagen-C-peptidase activating, besides fibrillar collagen types I-III, several enzymes and growth factors involved in the generation of extracellular matrix. This study investigated the effect of adding and inhibiting BMP-1 directly post fracture. Standardised femoral fractures were stabilized by an intramedullary nail in 12 week-old female C57Bl/6J mice. We injected either 20 µL recombinant active BMP-1, activity buffer or the BMP-1 specific inhibitor “sizzled”. After 7, 14 and 28 days, mice were sacrificed. Femurs were dissected and paraffin slides were prepared. Callus composition was divided into soft tissue, mineralized and cartilaginous callus. Murine MC3T3 pre-osteoblastic cells were kept in culture adding BMP-1 and sizzled during osteoblastic differentiation. Putative cytotoxicity was determined using MTT-vitality assay. Cell calcification, collagen deposition, and BMP-2 and myostatin protein quantity were characterized. Adding BMP-1 displayed a weak positive effect on the outcome. After 7 days, more mineralised callus was present, meanwhile the cartilaginous callus was apparently remodelled at higher rate. In the case of BMP-1 inhibition, we observed more cartilaginous callus, which may indicate reduced stability. In cell culture, we could observe a high interference with mineralisation capabilities depending on the stage of osteoblastic development when adding BMP-1 or inhibiting it. Addition and inhibition impaired myostatin (anti-osteogen) and BMP-2 (pro-osteogen) expression. Interfering with BMP-1 homeostasis in this early stage of fracture repair seems to have rather negative effects. Inhibition apparently yields lower callus quality while the addition of BMP-1 does not significantly accelerate the healing outcome. Cell culture experiments show that BMP-1 application after 7 days of healing leads to higher collagen output but has no effect on mineralisation. This may suggest that BMP-1 application at a later time-point may lead to more pronounced beneficial effects on fracture repair


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 85 - 85
4 Apr 2023
Wulfhorst M Büssemaker H Meinshausen A Herbster M Döring J Mai V Lohmann C Kautz A Laube T Wyrwa R Schnabelrauch M Bertrand J
Full Access

The implantation of endoprosthesis is a routine procedure in orthopaedics. Endoprosthesis are mainly manufactured from ceramics, polymers, metals or metal alloys. To ensure longevity of the implants they should be as biocompatible as possible and ideally have antibacterial properties, to avoid periprosthetic joint infections (PJI). Various antibacterial implant materials have been proposed, but have so far only been used sporadically in patients. PJI is one of the main risk factors for revision surgeries. The aim of the study was to identify novel implant coatings that both exhibit antibacterial properties whilst having optimal biocompatibility. Six different novel implant coatings and surface modifications (EBM TiAl6V4, strontium, TiCuN, TiNbN, gentamicin phosphate (GP), gentamicin phosphate+cationic polymer (GP+CP)) were compared to standard CoCrMo-alloy. The coatings were further characterized with regard to the surface roughness. E. coli and S. capitis were cultured on the modified surfaces to investigate the antibacterial properties. To quantify bacterial proliferation the optical density (OD) was measured and viability was determined using colony forming units (CFU). Murine bone marrow derived macrophages (BMMs) were cultured on the surfaces and differentiated into osteoblasts to quantify the mineralisation using the alizarin red assay. All novel coatings showed reduced bacterial proliferation and viability compared to standard CoCrMo-alloy. A significant reduction was observed for GP and GP+CP coated samples compared to CoCrMo (OD. GP,E.coli. = 0.18±0.4; OD. GP+CP,E.coli. = 0.13±0.3; p≤0.0002; N≥7-8). An increase in osteoblast-mediated mineralisation was observed on all surfaces tested compared to CoCrMo. Furthermore, GP and GP+CP coated samples showed a statistically significant increase (M. GP. = 0.21±0.1; M. GP+CP. = 0.25±0.2; p<0.0001; N≥3-6). The preliminary data indicates that the gentamicin containing surfaces have the most effective antibacterial property and the highest osseointegrative capacity. The use of antibiotic coatings on prostheses could reduce the risk of PJI while being applied on osseointegrative implant surfaces


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 80 - 80
4 Apr 2023
Prabhakaran V Hawkswell R Paxton J
Full Access

3D spheroid culture is a bridge between standard 2D cell culture and in vivo research which mimics the physiological microenvironment in scaffold-free conditions. Here, this 3D technique is being investigated as a potential method for engineering bone tissue in vitro. However, spheroid culture can exhibit limitations, such as necrotic core formation due to the restricted access of oxygen and nutrients. It is therefore important to determine if spheroids without a sizeable necrotic core can be produced. This study aims to understand necrotic core formation and cell viability in 3D bone cell spheroids using different seeding densities and media formulations. Differentiated rat osteoblasts (dRObs) were seeded in three different seeding densities (1×10. 4. , 5×10. 4. , 1×10 cells) in 96 well U-bottom cell-repellent plates and in three different media i.e., Growth medium (GM), Mineralisation medium 1 (MM1) and MM2. Spheroids were analysed from day 1 to 28 (N=3, n=2). Cell count and viability was assessed by trypan blue method. One way ANOVA and post-hoc Tukey test was performed to compare cell viability among different media and seeding densities. Histological spheroid sections were stained with hematoxylin and eosin (H&E) to identify any visible necrotic core. Cell number increased from day 1 to 28 in all three seeding densities with a notable decrease in cell viability. 1×10. 4. cells proliferated faster than 5×10. 4. and 1×10. 5. cells and had proportionately similar cell death. The necrotic core area was relatively equivalent between all cell seeding densities. The larger the spheroid size, the larger is the size of the necrotic core. This study has demonstrated that 3D spheroids can be formed from dRobs at a variety of seeding densities with no marked difference in necrotic core formation. Future studies will focus on utilising the bone cell spheroids for engineering scalable scaffold-free bone tissue constructs


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 66 - 66
4 Apr 2023
Li M Chow S Wong R Cheung W
Full Access

Osteoporotic fracture has become a major problem in ageing population and often requires prolonged healing time. Low Intensity Pulsed Ultrasound (LIPUS) can significantly enhance fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). DMP1 in osteocytes is responsible for maintaining LCN and mineralisation. This study aims to investigate osteocyte-specific DMP1's role in enhanced osteoporotic fracture healing in response to mechanical stimulation. Bilateral ovariectomy was performed in 6-month-old female SD rats to induce osteoporosis. Metaphyseal fracture was created at left distal femur using oscillating micro-saw. Rats were randomised to groups: (1) DMP1 KD, (2) DMP1 KD + LIPUS, (3) Control, or (4) Control + LIPUS, where KD stands for knockdown by injection of shRNA into marrow cavity 2 weeks before surgery. Assessments included weekly radiography, microCT and immunohistochemistry on DMP1, E11, FGF23 and sclerostin. DMP1 KD significantly impaired LIPUS-accelerated fracture healing when comparing KD + LIPUS group to Control + LIPUS group. The X-ray relative opacity showed less tissue growth at all timepoints (Week 1, 3 & 6; p=0.000, 0.001 and 0.003 respectively) and the bone volume fraction was decreased after DMP1 KD at Week 3 (p=0.006). DMP1 KD also significantly altered the expression levels of osteocyte-specific DMP1, E11, FGF23 and sclerostin during healing process. The lower relative opacity and bone volume fraction in DMP1 KD groups indicated that knockdown of DMP1 was associated with poorer fracture healing process compared to non-knockdown groups. The similar results between knockdown group with and without LIPUS showed that blockage of DMP1 would negate LIPUS-induced enhancement on fracture healing. Acknowledgment: General Research Fund (Ref: 14113018)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_1 | Pages 2 - 2
23 Jan 2023
Newton Ede M Pearson MJ Philp AM Cooke ME Nicholson T Grover LM Jones SW
Full Access

To determine whether spinal facet osteoblasts at the curve apex display a different phenotype to osteoblasts from outside the curve in patients with adolescent idiopathic scoliosis (AIS). Intrinsic differences in the phenotype of spinal facet bone tissue and in spinal osteoblasts have been implicated in the pathogenesis of AIS. However, no study has compared the phenotype of facet osteoblasts at the curve apex with the facet osteoblasts from outside the curve in patients with AIS. Facet bone tissue was collected from three sites, the concave and convex side at the curve apex and from outside the curve from three female patients with AIS (aged 13–16 years). Micro-CT analysis was used to determine the density and trabecular structure. Osteoblasts were then cultured from the sampled bone. Osteoblast phenotype was investigated by assessing cellular proliferation (MTS assay), cellular metabolism (alkaline phosphatase and Seahorse Analyser), bone nodule mineralisation (Alizarin red assay), and the mRNA expression of Wnt signalling genes (quantitative RT-PCR). Convex bone showed greater bone mineral density and trabecular thickness than did concave bone. The convex side of the curve apex exhibited a significantly higher proliferative and metabolic phenotype and a greater capacity to form mineralised bone nodules than did concave osteoblasts. mRNA expression of SKP2 was significantly greater in both concave and convex osteoblasts than in non-curve osteoblasts. The expression of SFRP1 was significantly downregulated in convex osteoblasts compared with either concave or non-curve. Intrinsic differences that affect osteoblast function are exhibited by spinal facet osteoblasts at the curve apex in patients with AIS


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 27 - 27
1 Nov 2021
Williamson A Bateman LE Maitre CL Kelly D Aberdein N
Full Access

Introduction and Objective. Global prevalence of obesity has risen almost three-fold between 1975 and 2016. Alongside the more well-known health implications of obesity such as cardiovascular disease, cancer and type II diabetes, is the effect of male obesity on testosterone depletion and hypogonadism. Hypogonadism is a well-known contributor to the acceleration of bone loss during aging, and obesity is the single biggest risk factor for testosterone deficiency in men. Understanding the micro and macro structural changes to bone in response to testosterone depletion in combination with a high fat ‘Western’ diet, will advance our understanding of the relationship between obesity and bone metabolism. This study investigated the impact of surgically induced testosterone depletion and subsequent testosterone treatment upon bone remodelling in mice fed a high fat diet. Materials and Methods. Male ApoE. −/−. mice were split into 3 groups at 7 weeks of age and fed a high fat diet: Sham surgery with placebo treatment, orchiectomy surgery with placebo treatment, and orchiectomy surgery with testosterone treatment. Surgeries were performed at 8 weeks of age, followed by fortnightly testosterone treatment via injection. Mice were sacrificed at 25 weeks of age. Tibiae were collected and scanned ex-vivo at 4.3μm on a SkyScan 1272 Micro-CT scanner (Bruker). Left tibiae were used for assessment of trabecular and cortical Volumes of Interest (VOIs) 0.2mm and 1.0mm respectively from the growth-plate bridge break. Tibiae were subsequently paraffin embedded and sectioned at 4μm prior to immunohistochemical evaluation of alkaline phosphatase. Results. Trabecular bone volume and mineral density were significantly reduced in orchiectomised mice compared to sham-operated controls; and these parameters were normalised to control levels in orchiectomised mice treated with testosterone. In contrast, Trabecular thickness was significantly higher in testosterone depleted animals. Cortical bone parameters and body weights did not significantly differ between groups. Levels of alkaline phosphatase did not differ significantly in cortical or trabecular osteoblasts between groups. Conclusions. Findings suggest that testosterone deficiency significantly reduces trabecular bone parameters, and testosterone therapy may be a useful intervention for the loss of bone mass in testosterone deficient males. These results indicate that testosterone therapy may be useful for the treatment of trabecular bone frailty in testosterone deficient males. Observed changes in trabecular bone do not appear to be due to decreased mineralisation caused by osteoblast alkaline phosphatase. Ongoing work includes histology analysis to elucidate the mechanisms underpinning the changes seen in the bones of testosterone deficient animals


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 115 - 115
1 Nov 2021
Maestro L García-Rey E Bensiamar F Rodriguez-Lorenzo L Vilaboa N Saldaña L
Full Access

Introduction and Objective. Mesenchymal stem cells (MSC) are attractive candidates for bone regeneration approaches. Benefits of MSC therapy are mainly attributed to paracrine effects via soluble factors, exerting both immunoregulatory and regenerative actions. Encapsulation of MSC in hydrogels prepared with extracellular matrix (ECM) proteins has been proposed as a strategy to enhance their survival and potentiate their function after implantation. Functional activity of MSC can be regulated by the physical and mechanical properties of their microenvironment. In this work, we investigated whether matrix stiffness can modulate the crosstalk between MSC encapsulated in collagen hydrogels with macrophages and osteoblasts. Materials and Method. Collagen hydrogels with a final collagen concentration of 1.5, 3 and 6 mg/mL loaded with human MSC were prepared. Viscoelastic properties of hydrogels were measured in a controlled stress rheometer. Cell distribution into the hydrogels was examined using confocal microscopy and the levels of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E. 2. (PGE. 2. ) released by MSC were quantified by immunoassays. To determine the effect of matrix stiffness on the immunomodulatory potential of MSC, human macrophages obtained from healthy blood were cultured in media conditioned by MSC in hydrogels. The involvement of IL-6 and PGE. 2. in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Finally, the influence of soluble factors released by MSC in hydrogels on bone-forming cells was studied using osteoblasts obtained from trabecular bone explants from patients with osteonecrosis of the femoral head during total hip arthroplasty. Results. MSC loaded in hydrogels containing varying concentrations (1.5, 3 and 6 mg/mL) of collagen were viable. Rheology measurements determined that the hydrogel stiffness increased with increasing collagen concentration. Encapsulation of MSC into hydrogels barely affected their storage modulus values. MSC acquired a three-dimensional (3D) arrangement in all hydrogels and showed a more elongated shape in hydrogels with higher stiffness. The secretion of IL-6 and PGE. 2. by MSC in hydrogels increased with increasing matrix stiffness. Media conditioned by MSC encapsulated in stiffer hydrogels decreased TNF-α levels secreted by macrophages to a higher extent than media conditioned by MSC in softer hydrogels. This effect was partially mediated by PGE. 2. Finally, our preliminary results indicated that factors released by MSC in hydrogels regulated osteoblast-mediated mineralisation and this effect was dependent on hydrogel stiffness. Conclusions. Our data indicate that matrix stiffness of collagen hydrogels regulates the production of soluble factors by MSC and their paracrine actions on macrophages and osteoblasts


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 30 - 30
1 Nov 2021
Maestro L García-Rey E Bensiamar F Saldaña L
Full Access

Introduction and Objective. Osteonecrosis of the femoral head (ONFH) is an evolving and disabling condition that often leads to subchondral collapse in late stages. It is the underlying diagnosis for approximately 3%–12% of total hip arthroplasties (THAs) and the most frequent aetiology for young patients undergoing THA. To date, the pathophysiological mechanisms underlying ONFH remain poorly understood. In this study, we investigated whether ONFH without an obvious etiological factor is related to impaired osteoblast activities, as compared to age-matched patients with primary OA. Materials and Methods. We cultured osteoblasts isolated from trabecular bone explants taken from the femoral head of patients with ONFH and from intertrochanteric region of patients with ONFH or with OA and compared their in vitro mineralisation capacity and secretion of paracrine factors. Results. Compared to patients with OA, osteoblasts obtained from the intertrochanteric region of patients with ONFH showed reduced mineralisation capacity, which further decreased in osteoblasts from the femoral head of the same patient. Lower mineralisation of osteoblasts from patients with ONFH correlated with lower mRNA levels of genes encoding osteocalcin and bone sialoprotein and higher osteopontin expression. Osteoblasts from the intertrochanteric region of patients with ONFH secreted lower osteoprtegerin levels than those from patients with OA, resulting in a higher receptor activator of NF-κB ligand (RANKL)-to-osteoprotegerin (OPG) ratio. Notably, the RANKL-to-OPG ratio, as well as the secretion of the proresorptive factors interleukin-6 and prostaglandin E. 2. , was higher in osteoblasts from the femoral head of patients with ONFH than in those from the intertrochanteric region. Conclusions. ONFH is associated with a reduced mineralisation capacity of osteoblasts and increased secretion of proresorptive factors


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 7 - 7
1 Mar 2021
Gilbert S Bonnet C Jones R Mason D
Full Access

Abstract. Objectives. The mechanisms underlying abnormal joint mechanics are poorly understood despite it being a major risk factor for developing osteoarthritis. This study investigated the response of a 3D in vitro bone cell model to mechanical load. Methods. Human MSC cells (Y201) embedded in 3D type I collagen gels were differentiated in osteogenic media for 7-days in deformable, silicone plates. Gels were loaded once (5000 µstrain, 10Hz, 3000 cycles), RNA extracted 1-hr post load and assessed by RT-qPCR and RNAseq analysis (n=5/treatment). Cell shape and phenotype were assessed by immunocytochemistry and phalloidin staining. Data was analysed by Minitab. Results. RTqPCR revealed cells expressed markers of mature osteocytes (E11, sclerostin, DMP-1) and osteoprotegerin (OPG), alkaline phosphatase and type I collagen (COL1A1). Immunolocalisation of sclerostin and DMP-1 protein along with phalloidin staining confirmed a dendritic osteocyte phenotype. Load almost abolished sclerostin gene expression (p=0.05) and reduced E11 (2-fold p=0.03); COL1A1 was unchanged (p=0.349). Using DEseq2 analysis, of the 981 genes differentially regulated more than 2-fold at FDR p<0.05, 159 were downregulated and 821 upregulated by load. These were involved in processes important in bone biology including the inflammatory response (56 genes), ECM organisation (27), ageing (30), response to mechanical load (23), ER stress (34), regulation of ossification (26), bone morphogenesis (14), cartilage development (14), programmed cell death (161), and positive regulation of bone mineralisation (6). Discussion. Y201 cells were successfully differentiated to osteocytes. The osteocytes’ mechanical response revealed regulation of factors that contribute to bone remodelling and inflammation. Since the biological mechanisms underlying mechanically induced joint degeneration are unclear, there is a need for humanised, cell models to delineate molecular pathways activated by mechanical load. Such pathways may reveal the molecular basis for genetic predispositions to osteoarthritis and identify new therapeutic targets. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 117 - 117
1 Dec 2020
Elsayed SAH Allen MJ
Full Access

Millions of patients each year suffer from challenging non-healing bone defects secondary to trauma or disease (e.g. cancer, osteoporosis or osteomyelitis). Tissue engineering approach to non-healing bone defects has been investigated over the past few decades in a search for a novel solution for critical size bone defects. The success of the tissue engineering approach relies on three main pillars, the right type of cells; and appropriate scaffold; and a biologically relevant biochemical/ biophysical stimuli. When it comes to cells the mesodermal origin of mesenchymal stem cells and its well demonstrated multipotentiality makes it an ideal option to be used in musculoskeletal regeneration. For the presented set of experimental assays, fully characterised (passage 3 to 5)ovine adipose-derived mesenchymal stems cells (Ad-MSC) were cultured either in growth medium (GM) consisting of Dulbecco's Modification of Eagle's Medium (DMEM) supplemented with 10% (v/v) foetal bovine serum and 1% penicillin-streptomycin as a control or in osteogenic differentiation medium (DM), consisting of GM further supplemented with L- ascorbic acid (50 μg/ml), β-glycerophosphate (10 mM) and dexamethasone (100nM). Osteogenic differentiation was assessed biochemically by quantifying alkaline phosphatase (ALP) enzyme activity and alizarin red staining after 3, 7, 14 and 21 days in culture (where 1×105 cells/well were seeded in 24 well-plate, n=6/media type/ time point). Temporal patterns in osteogenic gene expression were quantified using real-time PCR for Runx-2, osteocalcin (OC), osteonectin (ON) and type 1 collagen (Col 1) at days 7, 15 and 21 (where 1×105 cells were seeded in T25 cell culture flasks for RNA extraction, n= 4 / gene/ media type/time point). The morphology of osteogenic cells was additionally evaluated by scanning electron microscopy (SEM) of cells seeded at low-density (1×102 cells) on glass coverslips for 2 weeks in GM or DM. The level of ALP activity of cells grown in osteogenic DM was significantly higher than the control growing in the standard growth medium (p ≤ 0.05) at days 3, 7 and 14. At 21 days there was a sharp drop in ALP values in the differentiating cells. Mineralisation, as evidenced by alizarin red staining, increased significantly by day 14 and then peaked at day 21. Quantitative real-time PCR confirmed early increases in Runx-2, Col 1 and osteonectin, peaking in the second week of culture, while osteocalcin peaked at 21 days of culture. Taken as a whole, these data indicate that ovine-MSCs exhibit a tightly defined pathway of initial proliferation and matrix maturation (up to 14 days), followed by terminal differentiation and mineralisation (days 14 to 21). SEM analysis confirmed the flattened, roughened appearance of these cells and abandoned extracellular matrix which resembled mature osteoblasts. Given the ready availability of adipose tissues, the use of Ad-MSCs as progenitors for bone tissue engineering applications is both feasible and reasonable. The data from this study indicate that Ad-MSCs follow a predictable pathway of differentiation that can be tracked using validated molecular and biochemical assays. Additional work is needed to confirm that these cells are osteogenic in vivo, and to identifying the best combination of scaffold materials and cell culture techniques (e.g. static versus dynamic) to accelerate or stimulate osteogenic differentiation for bone tissue engineering applications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 77 - 77
1 Jul 2020
Choy VMH Wong RMY Chow SK Cheung W Cheng J
Full Access

Age-related fragility fractures are highly correlated with the loss of bone integrity and deteriorated morphology of the osteocytes. Previous studies have reported low-magnitude high-frequency vibration(LMHFV) promotes osteoporotic diaphyseal fracture healing to a greater extent than in age-matched normal fracture healing, yet how osteoporotic fractured bone responds to the mechanical signal has not been explored. As osteocytes are prominent for mechanosensing and initiating bone repair, we hypothesized that LMHFV could enhance fracture healing in ovariectomized metaphyseal fracture through morphological changes and mineralisation in the osteocyte Lacuno-canalicular Network(LCN). As most osteoporotic fractures occur primarily at the metaphysis, an osteoporotic metaphyseal fracture model was established. A total of 72 six-month old female Sprague-Dawley rats (n=72) were obtained(animal ethical approval ref: 16–037-MIS). Half of the rats underwent bilateral ovariectomy(OVX) and kept for 3 months for osteoporosis induction. Metaphyseal fracture on left distal femur was created by osteotomy and fixed by a plate. Rats were then randomized to (1) OVX+LMHFV(20 mins/day and 5 days/week, 35Hz, 0.3g), (2) OVX control, (3) SHAM+LMHFV, (4) SHAM control. Assessments of morphological structural changes, functional markers of the LCN(Scanning Electron Microscopy, FITC-Imaris, immunohistochemistry), mineralization status(EDX, dynamic histomorphometry) and healing outcomes(X-ray, microCT, mechanical testing) were performed at week 1, 2 and 6 post-fracture. One‐way ANOVA with post-hoc test was performed. Statistical significance was set at p < 0.05. Our results showed LMHFV could significantly enhance the morphology of the LCN. There was a 65.3% increase in dendritic branch points(p=0.03) and 93% increase in canalicular length(p=0.019) in the OVX-LMHFV group at week 2 post-fracture. Besides, a similar trend was also observed in the SHAM+LMHFV group, with a 43.4% increase in branch points and 53% increase in canaliculi length at week 2. A significant increase of E11 and DMP1 was observed in the LMHFV groups, indicating the reconstruction of the LCN. The decreasing sclerostin and increasing FGF23 at week 1 represented the active bone formation phase while the gradual increase at week 6 signified the remodelling phase. Furthermore, Ca/P ratio, mineral apposition rate and bone formation rate were all significantly enhanced in the OVX+LMHFV group. The overall bone mineral density in BV was significantly raised in the OVX+LMHFV group at week 2(p=0.043) and SHAM+LMHFV at week 6(p=0.04). Quantitative analysis of microCT showed BV/TV was significantly increased at week 2 in OVX+LMHFV group(p=0.008) and week 6(p=0.001) in both vibration groups. In addition, biomechanical testing revealed that the OVX+LMHFV group had a significantly higher ultimate load(p=0.03) and stiffness(p=0.02) at week 2. To our best knowledge, this is the first report to illustrate LMHFV could enhance osteocytes' morphology, mineralisation status and healing outcome in a new osteoporotic metaphyseal fracture animal model. Our cumulative data supports that the mechanosensitivity of bone would not impair due to osteoporosis. The revitalized osteocyte LCN and upregulated osteocytic protein markers implied a better connectivity and transduction of signals between osteocytes, which may foster the osteoporotic fracture healing process through an enhanced mineralisation process. This could stimulate further mechanistic investigations with potential translation of LMHFV to our fragility fracture patients


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 12 - 12
1 Jan 2019
Sanghani-Kerai A Achilleos A Lanchashire H Coathup M Blunn G
Full Access

During remodelling, osteoclasts produce discrete bone cavities filled with bone and this is associated with the dimensions of the cavity. The aim of this study is to investigate the effect of pores of similar size to those produced by osteoclasts on the morphology, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. The hypothesis is that a porous surface similar in morphology to a bone surface prepared by osteoclasts will increase cell proliferation and osteogenic differentiation of MSCs. Sheep BMSCs were seeded onto plain titanium surfaces and 100µm, 250µm and 500µm discrete pores surfaces. Cell metabolic activity was investigated using Presto Blue on days 3, 7 and 10. Bone mineralisation was quantified by Alizarin red staining at days 3, 7 and 14. Cell morphology was observed by scanning electron microscopy (SEM). Data was statistically analysed using one-way analysis of variance and a Bonferroni correction method. Cells on porous discs had a three dimensional phenotype and aligned on the circumference of each pore. Metabolic activity was significantly higher by day 10 on plain discs compared to all porous discs. Bone mineralization was significantly higher on 100µm pores by day 3 (0.545mM±0.66; p=0.047) than plain discs and significantly higher on both 100µm and 250µm pores by day 7(p=0.000 and p=0.005) than plain discs. Substantial mineralised bone matrix was found on 100µm discs without being treated with osteogenic supplements, compared to other control disc types (p=0.043, p=0.003, p=0.000). The different topographies altered cell behaviour and migration.100µm pores demonstrated earlier and enhanced bone mineralisation even in the absence of osteogenic supplements. This pore size is aligned to the size of individual resorption bays that osteoclasts produce on bone surfaces and is considerably lower than the pore sizes used to enhance osteo-integration of implant surfaces


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 10 - 10
1 Jan 2019
Shah KM Heath PR Bradford JR Gartland A Wilkinson JM
Full Access

Commonly used alterations of prosthetic surfaces include grit-blasting (GB), plasma-sprayed titanium (Ti) or hydroxyapatite (HA) coating. Systemic concentrations of cobalt (Co) and chromium (Cr) are elevated in patients with metal-on-metal hip replacement, but can occur for all modular hip replacements. Here, we use whole genome microarrays to assess differential gene expression in primary human osteoblasts grown in vitro and on these prosthesis surfaces following exposure to clinically relevant concentrations of Co and Cr. Mesenchymal cells obtained from bone-fragments of 3 patients undergoing joint replacement surgery were differentiated into osteoblasts. Subsequently, cells were cultured in vitro on tissue-culture plates (TCP), or on GB, Ti and HA surfaces (JRI Orthopaedics Ltd, Sheffield, UK). Following 24hr exposure to a combination of clinically equivalent concentrations of Co2+:Cr3+, RNA was extracted and hybridized to SurePrint-G3 Gene Expression Microarray. Probe signals were normalised using ‘Limma’ package on R-Bioconductor and differential gene expression assessed with empirical Bayes approach (Log2FC>1.00, P<0.001 for differentially expressed genes). For cells grown on TCP, 11 genes were upregulated with 500μg/L Co2+:Cr3+. Of these, 4 were associated to HIF-1 signalling based on KEGG pathway analysis (P=5.4e-5). Exposure to 1000μg/L Co2+:Cr3+ altered expression at 164 loci for HA surfaces, and a separate 50 loci for Ti surfaces compared to GB surfaces. Genes for osteoblast differentiation (BMP2 and RGS2) were downregulated on HA surfaces compared to GB, whilst genes for cell-adhesion (ESAM), vesicular trafficking (RAB37) and protection against oxidative damage (NRF2) were upregulated. Ti surfaces caused an upregulation in ERBB3 and CNTF, which are associated with inhibition of osteoblast differentiation and mineralisation, when compared to GB surfaces. This study confirms the role of HIF-1 signalling in response to prosthesis generated metal ions, and is the first to provide a comprehensive genome-wide insight into transcriptional response of osteoblasts at prosthesis surface to clinically equivalent metal exposure


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 90 - 90
1 Nov 2018
Egan B Heard C Birchall J Mason D
Full Access

The AMPA/kainate glutamate receptor (GluR) antagonist NBQX reduced bone destruction when injected intra-articularly, in rat antigen induced arthritis (AIA) and is similarly protective in rodent models of osteoarthritis. NBQX reduced bone turnover in vivo and reduced mineralization in human primary osteoblasts (HOBs) in vitro. We are developing sustained release GluR antagonist delivery methods, to improve therapeutic effect. DNQX loaded Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were synthesized via double emulsion. DNQX loaded thermosetting hydrogels were synthesised by dissolving Pluronic-F127 (22% w/v) and Carbopol 934 (0.5% w/v) in dH. 2. O, homogenising with DNQX/NBQX and set in dialysis cassettes at 37˚C. Supernatants from nanoparticles and hydrogels suspended in PBS (37˚C) were analysed using high performance liquid chromatography to determine drug release. Y201 MSCs were differentiated to osteoblasts (DMEM+10% FBS, Dexamethasone, β-Glycerophosphate and Ascorbic acid-2-phosphate) in sustained presence/absence of NBQX (200µM) or DNQX (200 and 400µM). Alizarin red staining quantified mineralisation at 14 days. Nanoparticles encapsulated 2.5mM DNQX (encapsulation efficiency=22%) and released encapsulated drug over 4 weeks. Hydrogels released 2.5mM DNQX load over 24 hours in 37˚C PBS. Y201 alizarin red staining was significantly reduced by both DNQX (p<0.01) and NBQX (p<0.05), compared to untreated controls. PLGA nanoparticles and hydrogels revealed different sustained release profiles. Sustained treatment with GluR antagonists reduced mineralisation in Y201 derived osteoblasts, consistent with effects of NBQX in HOBs. Sustained release of NBQX and DNQX in nanoparticles and hydrogels may improve efficacy of AMPA/kainate GluR antagonists in reducing bone remodelling and enhancing their bone protective potential in the treatment of joint disease