Advertisement for orthosearch.org.uk
Results 1 - 20 of 65
Results per page:
Bone & Joint Research
Vol. 13, Issue 4 | Pages 149 - 156
4 Apr 2024
Rajamäki A Lehtovirta L Niemeläinen M Reito A Parkkinen J Peräniemi S Vepsäläinen J Eskelinen A

Aims

Metal particles detached from metal-on-metal hip prostheses (MoM-THA) have been shown to cause inflammation and destruction of tissues. To further explore this, we investigated the histopathology (aseptic lymphocyte-dominated vasculitis-associated lesions (ALVAL) score) and metal concentrations of the periprosthetic tissues obtained from patients who underwent revision knee arthroplasty. We also aimed to investigate whether accumulated metal debris was associated with ALVAL-type reactions in the synovium.

Methods

Periprosthetic metal concentrations in the synovia and histopathological samples were analyzed from 230 patients from our institution from October 2016 to December 2019. An ordinal regression model was calculated to investigate the effect of the accumulated metals on the histopathological reaction of the synovia.


The Bone & Joint Journal
Vol. 105-B, Issue 9 | Pages 946 - 952
1 Sep 2023
Dhawan R Young DA Van Eemeren A Shimmin A

Aims

The Birmingham Hip Resurfacing (BHR) arthroplasty has been used as a surgical treatment of coxarthrosis since 1997. We present 20-year results of 234 consecutive BHRs performed in our unit.

Methods

Between 1999 and 2001, there were 217 patients: 142 males (65.4%), mean age 52 years (18 to 68) who had 234 implants (17 bilateral). They had patient-reported outcome measures collected, imaging (radiograph and ultrasound), and serum metal ion assessment. Survivorship analysis was performed using Kaplan-Meier estimates. Revision for any cause was considered as an endpoint for the analysis.


Bone & Joint Open
Vol. 2, Issue 10 | Pages 785 - 795
1 Oct 2021
Matar HE Porter PJ Porter ML

Aims. Metal allergy in knee arthroplasty patients is a controversial topic. We aimed to conduct a scoping review to clarify the management of metal allergy in primary and revision total knee arthroplasty (TKA). Methods. Studies were identified by searching electronic databases: Cochrane Central Register of Controlled Trials, Ovid MEDLINE, and Embase, from their inception to November 2020, for studies evaluating TKA patients with metal hypersensitivity/allergy. All studies reporting on diagnosing or managing metal hypersensitivity in TKA were included. Data were extracted and summarized based on study design, study population, interventions and outcomes. A practical guide is then formulated based on the available evidence. Results. We included 38 heterogeneous studies (two randomized controlled trials, six comparative studies, 19 case series, and 11 case reports). The evidence indicates that metal hypersensitivity is a rare complication with some histopathological features leading to pain and dissatisfaction with no reliable screening tests preoperatively. Hypoallergenic implants are viable alternatives for patients with self-reported/confirmed metal hypersensitivity if declared preoperatively; however, concerns remain over their long-term outcomes with ceramic implants outperforming titanium nitride-coated implants and informed consent is paramount. For patients presenting with painful TKA, metal hypersensitivity is a diagnosis of exclusion where patch skin testing, lymphocyte transformation test, and synovial biopsies are useful adjuncts before revision surgery is undertaken to hypoallergenic implants with shared decision-making and informed consent. Conclusion. Using the limited available evidence in the literature, we provide a practical approach to metal hypersensitivity in TKA patients. Future national/registry-based studies are needed to identify the scale of metal hypersensitivity, agreed diagnostic criteria, and management strategies. Cite this article: Bone Jt Open 2021;2(10):785–795


The Bone & Joint Journal
Vol. 103-B, Issue 6 Supple A | Pages 145 - 149
1 Jun 2021
Crawford DA Passias BJ Adams JB Berend KR Lombardi AV

Aims

A limited number of investigations with conflicting results have described perivascular lymphocytic infiltration (PVLI) in the setting of total knee arthroplasty (TKA). The purpose of this study was to determine if PVLI found in TKAs at the time of aseptic revision surgery was associated with worse clinical outcomes and survivorship.

Methods

A retrospective review was conducted on 617 patients who underwent aseptic TKA revision who had histological analysis for PVLI at the time of surgery. Clinical and radiological data were obtained pre- and postoperatively, six weeks postoperatively, and then every year thereafter.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 141 - 141
1 Jul 2020
Delisle J Benderdour M Benoit B Giroux M Laflamme GY Nguyen H Ranger P Shi Q Vallières F Fernandes J
Full Access

Total Knee Arthroplasty (TKA) patients may present with effusion, pain, stiffness and functional impairment. A positive metal hypersensitivity (positive LTT) may be an indication for a revision surgery with a custom-made implant devoid of any hypersensitivity-related metal or an implant with the least possible ion content of the metal hypersensitivity, if no custom-made is available. The purpose of the current study is to assess the prevalence of metal hypersensitivity in subjects requiring a primary TKA and assess their early functional outcomes. We are recruiting 660 subjects admitted for TKA. Subjects are randomly assigned to 2 groups: oxidized zirconium implant group or cobalt-chrome implant group. Functional outcomes and quality of life (QoL) are measured pre operatively, 3, 6 and 12 months post operatively with WHOQOL-BREF (domain1-Physical Health, domain 2- Psychological, domain 3- Social relationships, domain 4-Environment), KSS, KOOS and pain Visual Analog Scale (VAS). LTT and metal ions are evaluated pre operatively and 12 months post-surgery. One hundred-sixty patients, 98 women, were enrolled in the study. Mean age was 65.6±8.9. Mean follow up (FU) was 7.1±3.8 months. Eighty-one (50.6%) were randomised in the cobalt-chrome group. Infection rate was 1.9%, one patient required debridement. Three patients (1.9%) presented with contracture at three months FU. At 12 months, WHOQOL-BREF domain 1, 2 and 4 improved significantly (p0,05). Overall, all 160 patients improved their functional outcomes and QoL. At 12 months, VAS scores decreased from 7±2.06 at baseline to 1.95±2.79. Furthermore, the high prevalence of positive LTT (27/65) do not seem to affect early functional outcomes and QoL on patients that may have received a potential implant with hypersensitivity (18/27)


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 30 - 30
1 Feb 2020
Hermle T Reyna AP Pfaff A Bader U Fink B Grupp T
Full Access

Introduction. Metal ion and particle release, particularly cobalt, has become an important subject in total hip arthroplasty, as it has shown to induce metal hypersensitivity, adverse local tissue reactions and systemic ion related diseases. The purpose of the following study was compare the ion release barrier function of a zirconium nitride (ZrN) multilayer coated hip stem for cemented use, designed for patients with metal ion hypersensitivity, against its uncoated version in a test configuration simulating the worst case scenario of a severely debonded hip stem. The ZrN multilayer coating is applied on a CoCrMo hip stem and consists of a thin adhesive chromium layer, five alternating intermediate layers out of chromium nitride (CrN) and chromium carbonitride (CrCN) and a final zirconium nitride (ZrN) shielding layer [1]. Methods. Hip stems with a ZrN multilayer coating (CoreHip AS, Aesculap AG, Germany) were tested in comparison with a cobalt-chrome uncoated version (CoreHip, Aesculap AG, Germany). In order to create a worst case scenario, the smallest stem size with the biggest offset in combination with an XL ceramic head (offset +7 mm) was used. The stems were embedded according to the ISO 7206-6 test in a bone cement sheet. Once the bone cement was bonded, the stem was pulled out and a PMMA grain was placed inside the femoral cavity in order to uprise the hip stem above its embedding line and simulate a debonded cemented hip stem with a severe toggling condition. The dynamic test was performed under bovine serum environment with an axial force of 3.875 kN [2] at 11.6 Hz for 15 million cycles. The test was interrupted after 1, 3, 5, 10 and 15 million cycles and the surfaces of the stems were analyzed through scanning electron microscopy (SEM) with energy dispersive X-Ray (EDX). Moreover, the test medium was analyzed for metal ion concentration (cobalt, chromium and molybdenum) using ICP-MS. Results. The SEM/EDX analysis demonstrated that the ZrN multilayer coating kept its integrity, as no trace of the substrate material (CoCrMo) could be detected. Furthermore, the taper of the ZrN group showed less fretting and corrosion than the taper of the CoCrMo stem (Fig.1). Moreover, the ion concentration analysis showed a reduction of up to two orders of magnitude in the release of cobalt, chromium and molybdenum in the ZrN coated stems in comparison with the uncoated version. Discussion. The results showed that, even in a worst case scenario of high micro-motion due to a severe stem debonding within the cement mantle, the hip stems with a ZrN multilayer coating substantially reduce the release of ions from the substrate material. For any figures or tables, please contact the authors directly


Bone & Joint Research
Vol. 8, Issue 10 | Pages 443 - 450
1 Oct 2019
Treacy RBC Holland JP Daniel J Ziaee H McMinn DJW

Objectives. Modern metal-on-metal (MoM) hip resurfacing arthroplasty (HRA), while achieving good results with well-orientated, well-designed components in ideal patients, is contraindicated in women, men with head size under 50 mm, or metal hypersensitivity. These patients currently have no access to the benefits of HRA. Highly crosslinked polyethylene (XLPE) has demonstrated clinical success in total hip arthroplasty (THA) and, when used in HRA, potentially reduces metal ion-related sequelae. We report the early performance of HRA using a direct-to-bone cementless mono-bloc XLPE component coupled with a cobalt-chrome femoral head, in the patient group for whom HRA is currently contraindicated. Methods. This is a cross-sectional, observational assessment of 88 consecutive metal-on-XLPE HRAs performed in 84 patients between 2015 and 2018 in three centres (three surgeons, including the designer surgeon). Mean follow-up is 1.6 years (0.7 to 3.9). Mean age at operation was 56 years (. sd. 11; 21 to 82), and 73% of implantations were in female patients. All patients were individually counselled, and a detailed informed consent was obtained prior to operation. Primary resurfacing was carried out in 85 hips, and three cases involved revision of previous MoM HRA. Clinical, radiological, and Oxford Hip Score (OHS) assessments were studied, along with implant survival. Results. There was no loss to follow-up and no actual or impending revision or reoperation. Median OHS increased from 24 (interquartile range (IQR) 20 to 28) preoperatively to 48 (IQR 46 to 48) at the latest follow-up (48 being the best possible score). Radiographs showed one patient had a head-neck junction lucency. No other radiolucency, osteolysis, component migration, or femoral neck thinning was noted. Conclusion. The results in this small consecutive cohort suggest that metal-on-monobloc-XLPE HRA is successful in the short term and merits further investigation as a conservative alternative to the current accepted standard of stemmed THA. However, we would stress that survival data with longer-term follow-up are needed prior to widespread adoption. Cite this article: R. B. C. Treacy, J. P. Holland, J. Daniel, H. Ziaee, D. J. W. McMinn. Preliminary report of clinical experience with metal-on-highly-crosslinked-polyethylene hip resurfacing. Bone Joint Res 2019;8:443–450. DOI: 10.1302/2046-3758.810.BJR-2019-0060.R1


Bone & Joint 360
Vol. 8, Issue 2 | Pages 16 - 18
1 Apr 2019


The Bone & Joint Journal
Vol. 101-B, Issue 2 | Pages 227 - 232
1 Feb 2019
Walker T Rutkowski L Innmann M Panzram B Herre J Gotterbarm T Aldinger PR Merle C

Aims. The treatment of patients with allergies to metal in total joint arthroplasty is an ongoing debate. Possibilities include the use of hypoallergenic prostheses, as well as the use of standard cobalt-chromium (CoCr) alloy. This non-designer study was performed to evaluate the clinical outcome and survival rates of unicondylar knee arthroplasty (UKA) using a standard CoCr alloy in patients reporting signs of a hypersensitivity to metal. Patients and Methods. A consecutive series of patients suitable for UKA were screened for symptoms of metal hypersensitivity by use of a questionnaire. A total of 82 patients out of 1737 patients suitable for medial UKA reporting cutaneous metal hypersensitivity to cobalt, chromium, or nickel were included into this study and prospectively evaluated to determine the functional outcome, possible signs of hypersensitivity, and short-term survivorship at a minimum follow-up of 1.5 years. Results. At a mean follow-up of three years (1.5 to 5.7), no local or systemic symptoms of hypersensitivity to metal were observed. One patient underwent revision surgery to a bicondylar prosthesis due to a tibial periprosthetic fracture resulting in a survival rate of 98.8% (95% confidence interval (CI) 91.7 to 99.8; number at risk, 28) at three years with the endpoint of revision for any reason and a survival rate of 97.6% (95% CI 90.6 to 99.3; number at risk, 29) for the endpoint of all reoperations. Clinical outcome was good to excellent with a mean Oxford Knee Score of 42.5 (. sd. 2.5; 37 to 48). Conclusion. This study is the first demonstrating clinical results and survival analysis of UKA using a CoCr alloy in patients with a history of metal hypersensitivity. Functional outcome and survivorship are on a high-level equivalent to those reported for UKA in patients without a history of metal hypersensitivity. No serious local or systemic symptoms of metal hypersensitivity could be detected, and no revision surgery was performed due to an adverse reaction to metal ions


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 49 - 49
1 Oct 2018
Samelko L Caicedo M Jacobs J Hallab NJ
Full Access

Introduction. There are several potential biological mechanisms that may influence aseptic implant failure including excessive innate and adaptive immune responses to implant debris. We investigated the hypothesis that patients with painful total joint replacements will exhibit elevated levels of metal reactivity and inflammatory markers compared to patients with well-performing TJA. We evaluated this hypothesis by testing for metal hypersensitivity using in vitro LTT assay and analyzing serum levels of selected inflammatory markers. Methods. Subject Groups: Blinded de-identified data from patients with TJR referred for metal hypersensitivity testing using a lymphocyte transformation test (LTT) and serum markers of inflammation using Luminex Multi-Analyte Assay was approved by Rush University IRB and retrospectively reviewed. None of the patients had radiographically identifiable osteolysis. Two groups of TJA patients were tested: Group 1: Well-functioning implant (<3 yrs. post-op), with no self-reported pain, i.e. <1 on 0–10 VAS scale (n=8) and Group 2: Painful TJR (<3 yrs. post-op), with self-determined pain of >8 on a 0–10 VAS scale at the time of blood draw (n=25). Metal-LTT: Peripheral blood mononuclear cells (PBMCs) were collected from 30mL of peripheral blood by Ficoll gradient separation. PBMCs were cultured with NiCl2. 3H Thymidine was added at day 5 of culture and 3H thymidine incorporation was analyzed using a beta scintillation counter at day 6. A stimulation index (SI) of reactivity was calculated by dividing scintillation counts per minute (cpms) of Ni challenged cells by those of untreated controls. A SI of <2 was considered nonreactive, 2 to <4 was mildly reactive and 4 to <8 was reactive. Luminex Assay: Serum samples were collected from whole blood and were analyzed according to manufacturer's protocols. Statistical analysis: Statistical differences were determined using unpaired t-test with Welch's correction with statistical significance at p≤0.1 (90% confidence interval). Results. To test if differences in metal sensitization exist among individuals with joint pain following TJR vs. well-functioning TJR (no pain), we analyzed each person-specific PBMC SI of reactivity to NiCl2. Painful TJR group exhibited greater sensitivity as demonstrated by significantly higher in vitro metal SI level. In general, inflammatory markers measured in serum among patients with pain following TJR were significantly increased compared to patients with no pain following TJR. Specifically, inflammatory markers that are classified as prototypical markers of a M1 inflammatory macrophage i.e. GMCSF, IL-12, IL-18, IL-1β and TNFα were significantly greater in TJR patients with pain compared to TJR patients with no pain. Due to this increase in inflammatory markers, IL-4, an anti-inflammatory marker was also significantly greater in TJR patients with pain in order to combat/mitigate the inflammatory microenvironment. While VEGF was the only marker that was significantly greater in TJR patients with no pain and is characteristic of M2 anti-inflammatory macrophage phenotype. Discussion. Metal sensitivity reactivity and serum markers of inflammation demonstrated significant differences between groups of patients with painful TJRs vs. well-functioning TJR. Classical markers of M1 phenotype were significantly greater in painful TJR group. Our data suggests that patients with self-reported pain following a TJR demonstrate active innate and adaptive immune responses that are significantly higher than patients with a well-performing TJR and that these differences are associated with detectable serum inflammatory markers. An important limitation of this study however, is that group subject numbers were low and that statistical differences found in these groups suggests these inflammatory markers may be more marked than was anticipated


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 40 - 40
1 Apr 2018
Kanojia R
Full Access

The evolution of orthopedic implants has witnessed a great evolution and allowed insights into the various metals and alloys compatible with the human body. However, some recent reports have raised concerns regarding hypersensitivity to several metals used in orthopedic implants. These cases are mostly documented in the field of arthroplasty. Metal ion release following hip or knee arthroplasty is a known phenomenon and associated immune reactions to these metal ions have been implicated in the causation of these hypersensitivity reactions. These reactions frequently lead to poor outcome following these implant surgeries. We here present two rare cases of metal induced hypersensitivity reactions following orthopedic surgeries. We have also reviewed the literature in this context to look into the various causes of metal reactions, types of implant involved in hypersensitivity, methods of testing and management options in these cases


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 48 - 48
1 Apr 2018
Reyna ALP Fritz B Schwiesau J Summer B Thomas P Grupp TM
Full Access

Total knee arthroplasty is a well established treatment for degenerative joint disease with good clinical results. However, complications may occur due to a biological response to polyethylene wear particles, leading to osteolysis and aseptic loosening, as well as local and systemic hypersensitivity reactions triggered by metal ions and particles such as chromium, cobalt and molybdenum. Moreover, there is an increasing demand on the performance of these implants, as this treatment is also performed in heavier, younger and middle-aged adults who have a significant physical activity and higher life expectancy. The purpose of the following study was to compare the wear characteristics and performance of a zirconium nitride (ZrN) coated knee implant, designed for patients with metal ion hypersensitivity, against the clinically established cobalt-chromium (CoCr) version under a high demanding activities wear simulation. Medium size AS Columbus® DD (Aesculap AG, Tuttlingen, Germany) femoral and tibial components with a ZrN surface were tested in comparison with the cobalt-chromium version Columbus® DD. For both groups, ultra-high-molecular weight polyethylene (UHMWPE) gliding surfaces (size T3, high 10 mm) were used. Wear simulation was performed on a load controlled 4 station knee wear simulator (EndoLab GmbH, Thansau, Germany) capable of reproducing loads and movement of daily activities measured in vivo (Bergmann et al, 2014) on 8 patients and normalized to a patient weight of 100 kg (Schwiesau et al, 2014). The load profiles were applied for 5 million cycles in a combination of 40% stairs up, 40% stairs down, 10% level walking, 8% chair raising and 2% deep squatting. Test serum was changed every 0.5 million cycles and all the components were cleaned and analyzed according to ISO 14243-2:2009(E). The gliding surfaces were evaluated for gravimetric wear and wear patterns, femur components analyzed for scratches and the test medium analyzed for metal ion concentration (cobalt, chromium, molybdenum and zirconium) using ICP-MS according to ISO 17294-2. The present study showed a wear rate reduction for the ZrN group (1.01 ± 0.29 mg/million) in comparison with the CoCr group (2.40 ± 1.18 mg/million cycles). The articulation surface of the ZrN coated femurs remained polished after the testing period, whereas the uncoated femurs showed wear scratches. Furthermore, the metal ion release from the ZrN coated implants was reduced orders of magnitude in comparison with the CoCr implants through the entire test. These results demonstrate the efficiency of ZrN coated knee implants to reduce wear as well as to prevent metal ion release in the knee joint


Bone & Joint 360
Vol. 6, Issue 4 | Pages 34 - 37
1 Aug 2017


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 11 - 11
1 Apr 2017
Murphy S
Full Access

Distal neck modularity places a modular connection at a mechanically critical location, which is also the location that confers perhaps the greatest clinical utility. The benefits of increased clinical options at that location must be weighed against the potential risks of adding an additional junction to the construct. Those risks include prosthetic neck fracture, taper corrosion, metal hypersensitivity, and adverse local tissue reaction. Further, in-vitro testing of ultimate or fatigue strength of femoral component designs has repeatedly failed to predict behavior in-vivo, raising questions about the utility of in-vitro testing that does not incorporate the effect of mechanically assisted crevice corrosion into the test design. The material properties of Ti alloy and CoCr alloy place limits on design considerations in the proximal femur. The smaller taper junctions that are necessary for primary reconstruction are particularly vulnerable to failure whereas larger taper junctions commonly used in revision modular femoral component designs have greater opportunity for success. Modular junctions of CoCr alloy on conventional Ti alloy have been shown to have a greater incidence of clinically significant mechanically assisted crevice corrosion and adverse reaction. Designs that have proven clinical strength and utility universally have larger, more robust junctions, that extend into the metaphysis of the femur. While these designs are primarily designed for revision total hip replacement (THR), they are occasionally indicated for primary THR. Overall, however, while design options at the neck-stem junction have unmatched clinical utility, no design that does not extend into the metaphysis has proven to be universally reliable. While routine use of modular neck components for primary THR does not appear to be clinically indicated based on current evidence, modular designs with proven successful proximal junctions appear to be indicated for revision THR and rare primary THR with extreme version or other anatomical circumstances


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 5 - 5
1 Dec 2016
Murphy S
Full Access

Distal neck modularity places a modular connection at a mechanically critical location which is also the location that confers perhaps the greatest clinical utility. Assessment of femoral anteversion in 342 of our total hip replacement (THR) patients by CT showed a range from −24 to 61 degrees. The use of monoblock stems in some of these deformed femurs therefore must result in a failure to appropriately reconstruct the hip and have increased risks of impingement, instability, accelerated bearing wear or fracture, and adverse local tissue reaction (ALTR). However, the risks of failing to properly reconstruct the hip without neck modularity must be weighed against the additional risks introduced by neck modularity. There are several critical design, material, and technique variables that are directly associated with higher or lower incidences of problems associated with modular neck femoral components. Unfortunately, in vitro testing of the fatigue strength of these constructs has failed to predict their behavior in vivo. Designs predicted to tolerate loads that far exceed those experienced in vivo still fail at unacceptably high rates. Titanium alloy neck components subjected to the stresses at the neck-stem junction continue to fail at an unacceptable incidence. CoCr alloy neck components, while theoretically stronger, still fracture and are further compromised by mechanically assisted crevice corrosion, metal hypersensitivity, and rarely, adverse tissue reaction. Designs that have proven clinical strength and utility universally have larger, more robust junctions that extend into the metaphysis of the femur. While these designs are primarily designed for revision THR, they are occasionally indicated for primary THR. Overall, however, while design options at the neck-stem junction have unmatched clinical utility, no design that does not extend into the metaphysis has proven to be universally reliable. While routine use for primary THR does not appear clinically indicated based on current evidence, modular designs with proven successful proximal junctions appear to be indicated for extreme version or anatomical circumstances


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 53 - 53
1 Dec 2016
Senay A Benderdour M Laflamme G Ranger P Shi Q Delisle J Fernandes J
Full Access

Total joint arthroplasty has proven to be efficient to relieve pain and regain mobility. In fact, most patients undergoing a total knee arthroplasty (TKA) are satisfied with their surgery (80 to 90%), yet 4 to 7% still complain of unexplainable pain and stiffness. Several authors have proposed that reactivity to the implant could explain this phenomenon. Still, no strong evidence supports this theory as of today. We aimed to determine the prevalence of metal and cement hypersensitivity in a cohort of patients with unexplained pain and stiffness after TKA. We retrieved data for a group of patients presenting unexplained pain and stiffness. We excluded all other potential known causes of pain. All patients were tested with a Lymphocyte Transformation Test from whole blood taps. We analysed data of hypersensitivity to metals (alloy particles of titanium and cobalt, aluminum, cobalt, nickel, zirconium, vanadium, molybdenum, cobalt, chromium and iron) and PMMA cement (bone cement monomer and particles). Fifty-three patients underwent a LTT for unexplained pain and stiffness after total knee arthroplasty between May 2012 and May 2015. The cohort consisted of 26 men and 27 women with a mean age of 66.3(±8.0) years. Six patients had no hypersensitivity (11.3%), leaving 88.7% of the cohort with hypersensitivity to metal and/or cement. Almost half the cohort of patients tested for PMMA was hypersensitive to cement (44.0%). The most common metal hypersensitivity was nickel (69.8%). Twelve patients presented sensitivity to only one metal (22.6%), whereas 35 patients were hypersensitive to more than one metal (66.0%). Eleven patients had revision surgery with a hypoallergenic prosthesis. Patients reported a significant diminution of pain as well as better knee function compared to preoperative status as early as 6 weeks postop, although some reported residual stiffness. The results of this study suggest that metal and/or cement hypersensitivity could play a role in cases of total knee arthroplasty with unexplained pain and stiffness. Randomised controlled clinical trials on the subject will be initiated by our team to further investigate this phenomenon


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 90 - 90
1 Nov 2016
Su E
Full Access

Metal-on-metal (MOM) hip arthroplasty has been associated with a variety of new failure modes that may be unfamiliar to surgeons who traditionally perform metal-on-polyethylene THR. These failure modes include adverse local tissue reaction to metal debris, hypersensitivity to metal debris, accelerated wear/metallosis, pseudotumours, and corrosion. A significant number of patients with metal-on-metal hip arthroplasty may present to surgeons for routine followup, concern over their implant, or frank clinical problems. A common issue with MOM hip arthroplasty that can lead to accelerated wear and failure is implant malposition. Malposition of a hard-on-hard bearing can lead to edge loading and accelerated wear at the articular surfaces, which will lead to elevation in blood metal ion levels and metallosis. Distinct from this failure mode is the possibility of metal hypersensitivity, which is believed to be an immunologically mediated reaction to normal amounts of metal debris. Because a modular MOM THR has multiple junctions and tapers that come into contact with one another, there also is the possibility of non-articular metal debris production and corrosion. This type of corrosion reaction can lead to soft tissue destruction not commonly seen with hip resurfacing. Therefore, it is important for orthopaedic surgeons to be aware of the intricacies of following a metal-on-metal hip arthroplasty and to be able to interpret test results such as metal ion levels and cross-sectional imaging. Furthermore, there is a difference in the incidence of problems depending upon the type of implant: hip resurfacing, small-diameter head metal-on-metal total hip replacement, and large diameter head MOM THR. This presentation will discuss the importance of routine monitoring and followup for patients with MOM THR, as well as the utility of measuring blood metal ion levels. The published risk stratification algorithm from the Hip Society will be reviewed


Bone & Joint 360
Vol. 5, Issue 5 | Pages 13 - 17
1 Oct 2016


The Bone & Joint Journal
Vol. 98-B, Issue 6 | Pages 736 - 740
1 Jun 2016
Sassoon AA Barrack RL

The use of large-diameter metal-on-metal (MoM) components in total hip arthroplasty (THA) is associated with an increased risk of early failure due to adverse local tissue reaction to metal debris (ARMD) in response to the release of metal ions from the bearing couple and/or head-neck taper corrosion. The aim of this paper was to present a review of the incidence and natural history of ARMD and the forms of treatment, with a focus on the need for and extent of resection or debulking of the pseudotumour. An illustrative case report is presented of a patient with an intra-pelvic pseudotumour associated with a large diameter MoM THA, which was treated successfully with revision of the bearing surface to a dual mobility couple and retention of the well-fixed acetabular and femoral components. The pseudotumour was left in situ. Resolution of the intra-pelvic mass and normalisation of metal ion levels was observed seven months post-operatively.

Cite this article: Bone Joint J 2016;98-B:736–40.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 82 - 82
1 May 2016
Trieb K
Full Access

Introduction. Total knee arthroplasty (TKA) is the second most common and successful joint replacement in orthopedics. Due to long-term results the problem of aseptic loosening, implant failure and hypersensitivity to metal ions remain. Therefore the introduction of a new TKA with ceramic tibial and femoral components is introduced. Methods. It is the aim of this prospective study to compare a full delta ceramic unconstrained TKA with its conventional counterpart (Brehm BPK-S). Each group includes 40 patients without demopgraphic differenve. All TKAs are cemented with the same surgical technique using a rotating polyethylene insert. Clinical and radiological evaluation were performed preoperatively, and 3, 12 and 24 months postoperatively using the oxford knee score, the KSS, the VAS and the EQ-5d. Results. The mean prroperative knee scores improved significantly in both groups without difference. The VAS increased from 53,4 points to 73,9 in the ceramic group and from 53,8 to 81,0 in the conventional (n.s. p=0,14) and the EQ-5d. The oxford knee score increased from 38,6 points to 21,9 in the ceramic group and from 37,6 to 20,0 in the conventional (n.s.). There were no radiolucent lines for the femur or tibia, no infections and no revisions or implant associated complications with a 12 month survival rate of 100%. Discussion. The observed clinical and radiological results are promising for the future of cermic tibial and femoral components in TKA. The ceramic components can be a solution for patients with metal ion hypersensitivity, because this is the first TKA completely metal free. Long-term results will show a possible superority of ceramic implants concerning wear, loosening and survivorship. Based on this it might also be a reliable alternative for osteoarthiritic knee joints