Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Bone & Joint Research
Vol. 13, Issue 7 | Pages 362 - 371
17 Jul 2024
Chang H Liu L Zhang Q Xu G Wang J Chen P Li C Guo X Yang Z Zhang F

Aims. The metabolic variations between the cartilage of osteoarthritis (OA) and Kashin-Beck disease (KBD) remain largely unknown. Our study aimed to address this by conducting a comparative analysis of the metabolic profiles present in the cartilage of KBD and OA. Methods. Cartilage samples from patients with KBD (n = 10) and patients with OA (n = 10) were collected during total knee arthroplasty surgery. An untargeted metabolomics approach using liquid chromatography coupled with mass spectrometry (LC-MS) was conducted to investigate the metabolomics profiles of KBD and OA. LC-MS raw data files were converted into mzXML format and then processed by the XCMS, CAMERA, and metaX toolbox implemented with R software. The online Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the metabolites by matching the exact molecular mass data of samples with those from the database. Results. A total of 807 ion features were identified for KBD and OA, including 577 positive (240 for upregulated and 337 for downregulated) and 230 negative (107 for upregulated and 123 for downregulated) ions. After annotation, LC-MS identified significant expressions of ten upregulated and eight downregulated second-level metabolites, and 183 upregulated and 162 downregulated first-level metabolites between KBD and OA. We identified differentially expressed second-level metabolites that are highly associated with cartilage damage, including dimethyl sulfoxide, uric acid, and betaine. These metabolites exist in sulphur metabolism, purine metabolism, and glycine, serine, and threonine metabolism. Conclusion. This comprehensive comparative analysis of metabolism in OA and KBD cartilage provides new evidence of differences in the pathogenetic mechanisms underlying cartilage damage in these two conditions. Cite this article: Bone Joint Res 2024;13(7):362–371


Bone & Joint Research
Vol. 13, Issue 5 | Pages 237 - 246
17 May 2024
Cheng B Wu C Wei W Niu H Wen Y Li C Chen P Chang H Yang Z Zhang F

Aims. To assess the alterations in cell-specific DNA methylation associated with chondroitin sulphate response using peripheral blood collected from Kashin-Beck disease (KBD) patients before initiation of chondroitin sulphate treatment. Methods. Peripheral blood samples were collected from KBD patients at baseline of chondroitin sulphate treatment. Methylation profiles were generated using reduced representation bisulphite sequencing (RRBS) from peripheral blood. Differentially methylated regions (DMRs) were identified using MethylKit, while DMR-related genes were defined as those annotated to the gene body or 2.2-kilobase upstream regions of DMRs. Selected DMR-related genes were further validated by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) to assess expression levels. Tensor composition analysis was performed to identify cell-specific differential DNA methylation from bulk tissue. Results. This study revealed 21,060 hypermethylated and 44,472 hypomethylated DMRs, and 13,194 hypermethylated and 22,448 hypomethylated CpG islands for differential global methylation for chondroitin sulphate treatment response. A total of 12,666 DMR-related genes containing DMRs were identified in their promoter regions, such as CHL1 (false discovery rate (FDR) = 2.11 × 10. -11. ), RIC8A (FDR = 7.05 × 10. -4. ), and SOX12 (FDR = 1.43 × 10. -3. ). Additionally, RIC8A and CHL1 were hypermethylated in responders, while SOX12 was hypomethylated in responders, all showing decreased gene expression. The patterns of cell-specific differential global methylation associated with chondroitin sulphate response were observed. Specifically, we found that DMRs located in TESPA1 and ATP11A exhibited differential DNA methylation between responders and non-responders in granulocytes, monocytes, and B cells. Conclusion. Our study identified cell-specific changes in DNA methylation associated with chondroitin sulphate response in KBD patients. Cite this article: Bone Joint Res 2024;13(5):237–246


Bone & Joint Research
Vol. 9, Issue 9 | Pages 578 - 586
1 Sep 2020
Ma M Liang X Wang X Zhang L Cheng S Guo X Zhang F Wen Y

Aims. Kashin-Beck disease (KBD) is a kind of chronic osteochondropathy, thought to be caused by environmental risk factors such as T-2 toxin. However, the exact aetiology of KBD remains unclear. In this study, we explored the functional relevance and biological mechanism of cartilage oligosaccharide matrix protein (COMP) in the articular cartilage damage of KBD. Methods. The articular cartilage specimens were collected from five KBD patients and five control subjects for cell culture. The messenger RNA (mRNA) and protein expression levels were detected by quantitative reverse transcription PCR (qRT-PCR) and western blot. The survival rate of C28/I2 chondrocyte cell line was detected by MTT assay after T-2 toxin intervention. The cell viability and mRNA expression levels of apoptosis related genes between COMP-overexpression groups and control groups were examined after cell transfection. Results. The mRNA and protein expression levels of COMP were significantly lower in KBD chondrocytes than control chondrocytes. After the T-2 toxin intervention, the COMP mRNA expression of C28/I2 chondrocyte reduced and the protein level of COMP in three intervention groups was significantly lower than in the control group. MTT assay showed that the survival rate of COMP overexpression KBD chondrocytes were notably higher than in the blank control group. The mRNA expression levels of Survivin, SOX9, Caspase-3, and type II collagen were also significantly different among COMP overexpression, negative control, and blank control groups. Conclusion. Our study results confirmed the functional relevance of COMP with KBD. COMP may play an important role in the excessive chondrocytes apoptosis of KBD patients. Cite this article: Bone Joint Res 2020;9(9):578–586


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 18 - 18
1 Aug 2012
Li S Chen J Caterson B Hughes C
Full Access

Introduction. Kashin-Beck disease (KBD) is an endemic degenerative osteoarthropathy affecting approximately 3 million people in China (Stone R, 2009). The precise aetiology of KBD is not clear, but the lack of selenium and the pollution of mycotoxins in food are a suspected cause of KBD. In this pilot study, we use a rat model to investigate the effect of low selenium and T-2 toxin on articular cartilage metabolism. Methods. 140 male Sprague-Dawley rats were fed with selenium-deficient or normal diet for 4 weeks to produce a low selenium or normal nutrition status. The rats were then fed for a further 4 weeks with low selenium or normal diets with or without T-2 toxin (100ng per gram body weight per day). The rat knee joints were fixed and paraffin embedded and histological and immunohistochemical staining was performed to analyse the metabolism of articular cartilage. Results. There was increased cell cluster formation in the middle and/or deep zones in rats fed with both diets. However, an apparent cell loss was observed in the low selenium + T-2 toxin group with an apparent increase in caspase-3 staining, indicating the increased cell apoptosis. Moreover, toluidine blue staining was reduced in the low selenium + T-2 toxin group, suggesting a loss of sulphated glycosaminoglycans. Similarly, there was reduced 2B6 and 6C3 staining in the territorial matrix of chondrocytes, indicating a reduced synthesis in 4-sulhated and native CS motifs. In contrast, increased 1B5 staining was observed in the articular cartilage from the low selenium + T-2 toxin group, suggesting a lack of CS sulphatransferase activity. Interestingly, there was increased 7D4 staining in the superficial zone of articular cartilage from low selenium + T-2 toxin group, suggesting an initiation of an osteoarthritis-like lesion. Discussion. These results indicated that low selenium nutrition and T-2 toxin could promote cell apoptosis and disrupt CS-GAG metabolism in ECM of rat articular cartilage in this animal model, which is similar to that observed in KBD patients. Collectively, our results support the hypothesis that low selenium and T-2 toxin are the cause of KBD


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 380 - 381
1 Oct 2006
Day M Cao J Li S Hayes A Hughes C Evans R Dent C Caterson B
Full Access

Introduction: Kashin-Beck disease (KBD) is a special endemic osteoarthropathy whose main pathologic changes occur in growth plate cartilage and articular cartilage of human limbs and joints where it is manifested as cartilage degeneration and necrosis. Past and current research suggests that KBD, and its endemic geographic distribution in China, is due to the combined presence of fungal mycotoxins (on stored food ingested by affected populations) and a regional selenium deficiency in the environment providing local food sources. Thus, we hypothesise that the presence of fungal mycotoxins and the absence of selenium in the diet specifically affects chondrocyte metabolism in the growth plate during limb and joint development and in articular cartilage of adults, which leads to localised tissue necrosis, and the onset of degenerative joint disease. The aim of this study was to examine the effects of mycotoxins; e.g. Nivalenol (NIV), selenium and NIV in the presence of selen! ium in in vitro chondrocyte culture systems to better understand cellular and molecular mechanisms underlying the pathogenesis of KBD. Methods: Chondrocyte tissue cultures were established using cartilage explant cultures either in the presence or absence of selenium (0.5–1.5 microg/ml) and the mycotoxin nivalenol (0.5–1.5 microg/ml) and culture for 1 to 4 days. Medium was harvested daily at day 1 through 4 and analysed for glycosaminoglycan (GAG) release and the presence of aggrecanase or MMP activity using RT-PCR for gene expression and monoclonal antibodies that detect their respective enzyme-generated neo-epitopes on cartilage aggrecan metabolites. Results: Our studies to date have shown that NIV exposure induces catabolic changes in chondrocyte metabolism with an increased expression of aggrecanase activity. Addition of selenium did not affect mRNA expression of the aggrecanases ADAMTS-4 & 5. Parallel studies involving immunohistochemical analyses of articular cartilage from KBD showed an increase in aggrecanase activity. Conclusions: These studies demonstrate that induction of aggrecanase activity as one of the molecular mechanisms involved is the pathogenesis of KBD. However, the addition of selenium does not alter aggrecanase gene expression indicating that its beneficial effects are occurring in other areas of cartilage metabolism


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 413 - 413
1 Oct 2006
Hodgson P Hughes C Day M Hayes A Cao J Li S Evans R Dent C Caterson B
Full Access

Introduction: Kashin-Beck disease (KBD) is an endemic osteoarthropathy with pathological changes occurring in growth plate and articular cartilage in humans. It manifests as cartilage degeneration and necrosis. It is postulated that KBD is due to fungal mycotoxins infiltrating the diet and a regional selenium deficiency in the environment providing food sources in a broad belt across China. Previous work has established an in vitro system in which chondrocytes are cultured and an ex vivo cartilage graft is produced. Subjecting these chondrocytes to either selenium (SEL), Nivalenol (NIV) or in combination during the growth of the graft was found to alter the morphology of the cartilage graft. In addition, the quantity of the large aggregating proteoglycan, was significantly reduced in a dose dependent manner in the presence of Nivalenol. This study aimed to examine the composition of aggrecan from grafts grown in the presence of NIV or SEL alone, or in combination to better understand cellular and molecular mechanisms underlying the pathogenesis of KBD. Methods: Chondrocytes (from 7 day old bovine cartilage) were seeded at high density in MilliCell filter inserts (12mm diameter; Millipore, MA). Cultures were maintained for 4 weeks in DMEM supplemented with 20% heat–inactivated FBS, ascorbate (100μg/ml) and TGFß2 (5ng/ml) or additionally supplemented with either SEL , NIV or both at concentrations of 0.01, 0.05 and 0.1μg/ml. Media was refreshed thrice weekly and later analysed. At 4 weeks the cartilage grafts were harvested, weighed and extracted in 4M guanidium chloride (with an inhibitor cocktail) for biochemical analysis of matrix molecules. Residues were papain digested. Glycosaminoglycan concentration was determined using the DMMB assay in all media samples, guanidine extracts and papain digests. Aggrecan and GAG composition was determined using Western blotting with a panel of antibodies recognising chondroitin sulphate (CS), keratan sulphate (KS) and protein core epitopes present in aggrecan. Results: The total GAG synthesised in a 4week period was substantially reduced in chondrocytes cultured in the presence of NIV at 0.05 and 0.1μg/ml and to a lesser extent in those cultures exposed to the highest dose of SEL. However, the amount of GAG released into the media remained fairly constant within the treatment groups, but a marked reduction was apparent in the guanidine extracts of the cartilage grafts. Western blot analysis with a series of antibodies on guanidine extracted aggrecan showed no substantial changes in the core protein molecular weights however analysis demonstrated that KS was reduced in NIV treated cultures. Results also indicated that NIV treated cultures appeared to contain less CS substitutions on the aggrecan core protein. Discussion: The GAG concentration data indicates that there is an inability of the GAG to remain within the cartilage grafts extracellular matrix. when treated with NIV. Western blot analysis indicates minor changes in the composition of the aggrecan in relation to protein core length and CS/KS side chain substitutions or length. Further work will investigate the proportion of aggrecan able to form high molecular weight aggregates, the metabolism of link protein and hyaluronan