header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

CARTILAGE MATRIX METABOLISM IN AN IN VITRO CULTURE SYSTEM THAT MIMICS CARTILAGE PATHOLOGY IN KASHIN-BECK DISEASE



Abstract

Introduction: Kashin-Beck disease (KBD) is an endemic osteoarthropathy with pathological changes occurring in growth plate and articular cartilage in humans. It manifests as cartilage degeneration and necrosis. It is postulated that KBD is due to fungal mycotoxins infiltrating the diet and a regional selenium deficiency in the environment providing food sources in a broad belt across China. Previous work has established an in vitro system in which chondrocytes are cultured and an ex vivo cartilage graft is produced. Subjecting these chondrocytes to either selenium (SEL), Nivalenol (NIV) or in combination during the growth of the graft was found to alter the morphology of the cartilage graft. In addition, the quantity of the large aggregating proteoglycan, was significantly reduced in a dose dependent manner in the presence of Nivalenol. This study aimed to examine the composition of aggrecan from grafts grown in the presence of NIV or SEL alone, or in combination to better understand cellular and molecular mechanisms underlying the pathogenesis of KBD.

Methods: Chondrocytes (from 7 day old bovine cartilage) were seeded at high density in MilliCell filter inserts (12mm diameter; Millipore, MA). Cultures were maintained for 4 weeks in DMEM supplemented with 20% heat–inactivated FBS, ascorbate (100μg/ml) and TGFß2 (5ng/ml) or additionally supplemented with either SEL , NIV or both at concentrations of 0.01, 0.05 and 0.1μg/ml. Media was refreshed thrice weekly and later analysed. At 4 weeks the cartilage grafts were harvested, weighed and extracted in 4M guanidium chloride (with an inhibitor cocktail) for biochemical analysis of matrix molecules. Residues were papain digested. Glycosaminoglycan concentration was determined using the DMMB assay in all media samples, guanidine extracts and papain digests. Aggrecan and GAG composition was determined using Western blotting with a panel of antibodies recognising chondroitin sulphate (CS), keratan sulphate (KS) and protein core epitopes present in aggrecan.

Results: The total GAG synthesised in a 4week period was substantially reduced in chondrocytes cultured in the presence of NIV at 0.05 and 0.1μg/ml and to a lesser extent in those cultures exposed to the highest dose of SEL. However, the amount of GAG released into the media remained fairly constant within the treatment groups, but a marked reduction was apparent in the guanidine extracts of the cartilage grafts. Western blot analysis with a series of antibodies on guanidine extracted aggrecan showed no substantial changes in the core protein molecular weights however analysis demonstrated that KS was reduced in NIV treated cultures. Results also indicated that NIV treated cultures appeared to contain less CS substitutions on the aggrecan core protein.

Discussion: The GAG concentration data indicates that there is an inability of the GAG to remain within the cartilage grafts extracellular matrix. when treated with NIV. Western blot analysis indicates minor changes in the composition of the aggrecan in relation to protein core length and CS/KS side chain substitutions or length. Further work will investigate the proportion of aggrecan able to form high molecular weight aggregates, the metabolism of link protein and hyaluronan.

Correspondence should be addressed to Mr Carlos Wigderowitz, Honorary Secretary BORS, University Dept of Orthopaedic & Trauma Surgery, Ninewells Hospital & Medical School, Dundee DD1 9SY.

None of the authors have received anything of value from a commercial or other party related directly or indirectly to the subject of the presentation