Advertisement for orthosearch.org.uk
Results 1 - 20 of 52
Results per page:
Bone & Joint Research
Vol. 13, Issue 6 | Pages 279 - 293
7 Jun 2024
Morris JL Letson HL McEwen PC Dobson GP

Aims

Adenosine, lidocaine, and Mg2+ (ALM) therapy exerts differential immuno-inflammatory responses in males and females early after anterior cruciate ligament (ACL) reconstruction (ACLR). Our aim was to investigate sex-specific effects of ALM therapy on joint tissue repair and recovery 28 days after surgery.

Methods

Male (n = 21) and female (n = 21) adult Sprague-Dawley rats were randomly divided into ALM or Saline control treatment groups. Three days after ACL rupture, animals underwent ACLR. An ALM or saline intravenous infusion was commenced prior to skin incision, and continued for one hour. An intra-articular bolus of ALM or saline was also administered prior to skin closure. Animals were monitored to 28 days, and joint function, pain, inflammatory markers, histopathology, and tissue repair markers were assessed.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims

Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA).

Methods

Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 52 - 52
10 Feb 2023
Di Bella C
Full Access

3D printing and Bioprinting technologies are becoming increasingly popular in surgery to provide a solution for the regeneration of healthy tissues. The aim of our project is the regeneration of articular cartilage via bioprinting means, to manage isolated chondral defects. Chrondrogenic hydrogel (chondrogel: GelMa + TGF-b3 and BMP6) was prepared and sterilised in our lab following our standard protocols. Human adipose-derived mesenchymal stem cells were harvested from the infrapatellar fat pad of patients undergoing total knee joint replacements and incorporated in the hydrogel according to our published protocols. The chondrogenic properties of the chondrogel have been tested (histology, immunohistochemistry, PCR, immunofluorescence, gene analysis and 2. nd. harmonic generation microscopy) in vitro and in an ex-vivo model of human articular defect and compared with standard culture systems where the growth factors are added to the media at repeated intervals. The in-vitro analysis showed that the formation of hyaline cartilage pellet was comparable between the two strategies, with a similar metabolic activity of the cells. These results have been confirmed in the ex-vivo model: hyaline-like cartilage was observed within the chondral defect in both the chondrogel group and the control group after 28 days in culture. The use of bioprinting techniques in vivo requires the ability of stem cells to access growth factors directly in the environment they are in, as opposed to in vitro techniques where these factors are provided externally at recurrent intervals. This study showed the successful strategy of incorporating chondrogenic growth factors for the formation of hyaline-like cartilage in vitro and in an ex-vivo model of chondral loss. The incorporation of chondrogenic growth factors in a hydrogel is a possible strategy for articular cartilage regeneration


Bone & Joint Research
Vol. 12, Issue 1 | Pages 58 - 71
17 Jan 2023
Dagneaux L Limberg AK Owen AR Bettencourt JW Dudakovic A Bayram B Gades NM Sanchez-Sotelo J Berry DJ van Wijnen A Morrey ME Abdel MP

Aims

As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA).

Methods

Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.


Bone & Joint Research
Vol. 11, Issue 8 | Pages 561 - 574
10 Aug 2022
Schulze-Tanzil GG Delgado Cáceres M Stange R Wildemann B Docheva D

Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.

Cite this article: Bone Joint Res 2022;11(8):561–574.


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1075 - 1081
17 Dec 2021
Suthar A Yukata K Azuma Y Suetomi Y Yamazaki K Seki K Sakai T Fujii H

Aims

This study aimed to investigate the relationship between changes in patellar height and clinical outcomes at a mean follow-up of 7.7 years (5 to 10) after fixed-bearing posterior-stabilized total knee arthroplasty (PS-TKA).

Methods

We retrospectively evaluated knee radiographs of 165 knees, which underwent fixed-bearing PS-TKA with patella resurfacing. The incidence of patella baja and changes in patellar height over a minimum of five years of follow-up were determined using Insall-Salvati ratio (ISR) measurement. We examined whether patella baja (ISR < 0.8) at final follow-up affected clinical outcomes, knee joint range of motion (ROM), and Knee Society Score (KSS). We also assessed inter- and intrarater reliability of ISR measurements and focused on the relationship between patellar height reduction beyond measurement error and clinical outcomes.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 30 - 30
1 Dec 2021
Vogt A Darlington I Brooks R Birch M McCaskie A Khan W
Full Access

Abstract. Osteoarthritis is a common articular cartilage disorder and causes a significant global disease burden. Articular cartilage has a limited capacity of repair and there is increasing interest in the use of cell-based therapies to facilitate repair including the use of Mesenchymal Stromal Cells (MSCs). There is some evidence in the literature that suggests that advancing age is associated with declining MSC function, including reduced proliferation and differentiation potential, and greater cellular apoptosis. In our study, we first performed a systematic review of the literature to determine the effects of chronological age on the in vitro properties of MSCs, and then performed a laboratory study to investigate these properties. We initially conducted a PRISMA systematic review of the literature to review the evidence base for the effects of chronological age on the in vitro properties of MSCs including cell numbers, expansion, cell surface characterization and differentiation potential. This was followed by laboratory based experiments to assess these properties. Tissue from patients undergoing total knee replacement surgery was used to isolate MSCs from the infrapatellar fat pad using a method developed in our laboratory. The growth kinetics was determined by calculating the population doublings per day. Following expansion in culture, MSCs at P2 were characterised for a panel of cell surface markers using flow cytometry. The cells were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. The differentiation potential of the MSCs was assessed through tri-lineage differentiation assays. Chronological age-related changes in MSC function have important implications on the use of these cells in clinical applications for an ageing population. The results from this study will be used to plan further work looking at the effects of chronological age on cellular senescence and identify pathways that could be targeted to potentially reverse any age-related changes


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 14 - 14
1 Dec 2021
Darlington I Vogt A Williams EC Brooks R Birch M Mohorianu I Khan W McCaskie A
Full Access

Abstract. Focal articular cartilage defects do not heal and, left untreated, progress to more widespread degenerative changes. A promising new approach for the repair of articular cartilage defects is the application of cell-based regenerative therapies using mesenchymal stromal cells (MSCs). MSCs are however present in a number of tissues and studies suggest that they vary in their proliferation, cell surface characterisation and differentiation. As the phenotypic properties of MSCs vary depending on tissue source, a systematic comparison of the transcriptomic signature would allow a better understanding of these differences between tissues, and allow the identification of markers specific to a MSC source that is best suited for clinical application. Tissue was used from patients undergoing total knee replacement surgery for osteoarthritis following ethical approval and informed consent. MSCs were isolated from bone, cartilage, synovium and infrapatellar fat pad. MSC number and expansion were quantified. Following expansion in culture, MSCs were characterised using flow cytometry with several cell surface markers; the cells from all sources were positive for CD44, CD90 and CD105. Their differentiation potential was assessed through tri-lineage differentiation assays. In addition, bulk mRNA-sequencing was used to determine the transcriptomic signatures. Differentially expressed (DE) genes were predicted. An enrichment analysis focused on the DE genes, against GO and pathway databases (KEGG and Reactome) was performed; protein-protein interaction networks were also inferred (Metascape, Reactome, Cytoscape). Optimal sourcing of MSCs will amplify their cartilage regeneration potential. This is imperative for assessing future therapeutic transplantation to maximise the chance of successful cartilage repair. A better understanding of differences in MSCs from various sources has implications beyond cartilage repair


Bone & Joint Research
Vol. 10, Issue 11 | Pages 704 - 713
1 Nov 2021
Zhang H Li J Xiang X Zhou B Zhao C Wei Q Sun Y Chen J Lai B Luo Z Li A

Aims

Tert-butylhydroquinone (tBHQ) has been identified as an inhibitor of oxidative stress-induced injury and apoptosis in human neural stem cells. However, the role of tBHQ in osteoarthritis (OA) is unclear. This study was carried out to investigate the role of tBHQ in OA.

Methods

OA animal model was induced by destabilization of the medial meniscus (DMM). Different concentrations of tBHQ (25 and 50 mg/kg) were intraperitoneally injected in ten-week-old female mice. Chondrocytes were isolated from articular cartilage of mice and treated with 5 ng/ml lipopolysaccharide (LPS) or 10 ng/ml interleukin 1 beta (IL-1β) for 24 hours, and then treated with different concentrations of tBHQ (10, 20, and 40 μM) for 12 hours. The expression levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood were measured. The expression levels of interleukin 6 (IL-6), IL-1β, and tumour necrosis factor alpha (TNF-α) leptin in plasma were measured using enzyme-linked immunoabsorbent assay (ELISA) kits. The expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) signalling pathway proteins, and macrophage repolarization-related markers, were detected by western blot.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 122 - 122
1 Dec 2020
Huri PY Talak E Kaya B Huri G
Full Access

Articular cartilage is often damaged, and its treatment is usually performed by surgical operation. Today, tissue engineering offers an alternative treatment option for injuries or diseases with increasing importance. Infrapatellar fat pad (IPFP) is a densely vascularized and innervated extra synovial tissue that fills the anterior knee compartment. Adipose-derived stem cells from infrapatellar fat pad (IPFP-ASCs) have multipotency means that they can differentiate into connective tissue cells and have age-independent differentiation capacity as compared to other stem cells. In this study, the osteochondral tissue construct was designed with different inner pattern due to original osteochondral tissue structure and fabrication of it was carried out by 3D printing. For this purpose, alginate (3% w/v) and carboxymethylcellulose (CMC) (9%w /v) were used as bioink. Also, IPFP-ASCs were isolated with enzymatic degradation. Osteogenic and chondrogenic differentiation of IPFP-ASCs were investigated with Alizarin Red and Alcian Blue staining, respectively. IPFP-ASCs-laden osteochondral graft differentiation will be induced by controlled release of growth factor BMP-2 and TGF-β. Before this step, nanocapsules formation with double emission technique with model protein BSA was carried out with different concentration of PCL (5%,10% and 20%). The morphology and structure of the nanocapsules were determined with scanning electron microscopy (SEM). Also, we successfully designed and printed alginate and CMC based scaffold with 20 layers. Chondrogenic and osteogenic differentiation of IPFP-ASCs with suitable culture conditions was obtained. The isolation of IPFP-ASCs, formation of the nanocapsules, and 3D printing of osteochondral graft were carried out successfully


Bone & Joint Research
Vol. 9, Issue 12 | Pages 857 - 869
1 Dec 2020
Slullitel PA Coutu D Buttaro MA Beaule PE Grammatopoulos G

As our understanding of hip function and disease improves, it is evident that the acetabular fossa has received little attention, despite it comprising over half of the acetabulum’s surface area and showing the first signs of degeneration. The fossa’s function is expected to be more than augmenting static stability with the ligamentum teres and being a templating landmark in arthroplasty. Indeed, the fossa, which is almost mature at 16 weeks of intrauterine development, plays a key role in hip development, enabling its nutrition through vascularization and synovial fluid, as well as the influx of chondrogenic stem/progenitor cells that build articular cartilage. The pulvinar, a fibrofatty tissue in the fossa, has the same developmental origin as the synovium and articular cartilage and is a biologically active area. Its unique anatomy allows for homogeneous distribution of the axial loads into the joint. It is composed of intra-articular adipose tissue (IAAT), which has adipocytes, fibroblasts, leucocytes, and abundant mast cells, which participate in the inflammatory cascade after an insult to the joint. Hence, the fossa and pulvinar should be considered in decision-making and surgical outcomes in hip preservation surgery, not only for their size, shape, and extent, but also for their biological capacity as a source of cytokines, immune cells, and chondrogenic stem cells.

Cite this article: Bone Joint Res 2020;9(12):857–869.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 30 - 30
1 Dec 2020
Haartmans M Eveque-Mourroux M Eijkel G Emanuel K Tuijthof G van Rhijn L Heeren R Emans P Cillero-Pastor B
Full Access

The incidence of osteoarthritis (OA) is increasing in our younger population. OA development early in life is often related to cartilage damage, caused by (sport) injury or trauma. Detection of early knee OA is therefore crucial to target early treatment. However, early markers for OA prognosis or diagnosis are lacking. Hoffa's fat pad (HFP) is an emerging source for knee biomarkers, as it is easily accessible and shows important interaction with the homeostasis of the knee. In this study, we used Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) as a first approach. MALDI-MSI allows the study of tissue-specific molecular distributions. Therefore, we used MALDI-MSI to analyze the lipid profiles in the HFP of three patients with OA and three patients undergoing cartilage regenerative treatment. We demonstrate that the lipid profile of patients with OA is different from patients with cartilage defects.

HFP of each patient were snap frozen directly after surgical resection and cryosectioned at 15 μm. Each slide was sublimed with Norharmane matrix and analyzed by MALDI-MSI in positive and negative ion modes at a lateral resolution of 50 μm on a RapifleX Tissue Typer. The difference between patient groups were analyzed using principle component analysis and linear discriminant analysis. Lipid identifications were obtained on an Orbitrap Elite™ Hybrid Ion Trap-Orbitrap Mass Spectrometer in data dependent acquisition mode and analyzed using Lipostar software.

Linear discriminant analysis showed a specific lipid profile for each group (variance 33.94%). Score projections revealed a differential lipid spatial distribution of OA patients compared to cartilage defect patients. Among the lipids that differed significantly, for instance, the m/z 760.59 [M+H]+ was associated to osteoarthritis and identified as glycerophospholipid (PC 34:1), a main component of biological membranes. Additionally, the samples were found to be intra-tissue heterogeneous, with molecular profiles found in adipose-, connective- and synovial tissue.

These results suggest that lipid profiles in HFP could be useful for early OA detection. However, intra-tissue heterogeneity in HFP should be recognized when using HFP as a biomarker source.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1331 - 1340
3 Oct 2020
Attard V Li CY Self A Mann DA Borthwick LA O’Connor P Deehan DJ Kalson NS

Aims

Stiffness is a common complication after total knee arthroplasty (TKA). Pathogenesis is not understood, treatment options are limited, and diagnosis is challenging. The aim of this study was to investigate if MRI can be used to visualize intra-articular scarring in patients with stiff, painful knee arthroplasties.

Methods

Well-functioning primary TKAs (n = 11), failed non-fibrotic TKAs (n = 5), and patients with a clinical diagnosis of fibrosis1 (n = 8) underwent an MRI scan with advanced metal suppression (Slice Encoding for Metal Artefact Correction, SEMAC) with gadolinium contrast. Fibrotic tissue (low intensity on T1 and T2, low-moderate post-contrast enhancement) was quantified (presence and tissue thickness) in six compartments: supra/infrapatella, medial/lateral gutters, and posterior medial/lateral.


Bone & Joint Research
Vol. 9, Issue 9 | Pages 601 - 612
1 Sep 2020
Rajagopal K Ramesh S Walter NM Arora A Katti DS Madhuri V

Aims

Extracellular matrix (ECM) and its architecture have a vital role in articular cartilage (AC) structure and function. We hypothesized that a multi-layered chitosan-gelatin (CG) scaffold that resembles ECM, as well as native collagen architecture of AC, will achieve superior chondrogenesis and AC regeneration. We also compared its in vitro and in vivo outcomes with randomly aligned CG scaffold.

Methods

Rabbit bone marrow mesenchymal stem cells (MSCs) were differentiated into the chondrogenic lineage on scaffolds. Quality of in vitro regenerated cartilage was assessed by cell viability, growth, matrix synthesis, and differentiation. Bilateral osteochondral defects were created in 15 four-month-old male New Zealand white rabbits and segregated into three treatment groups with five in each. The groups were: 1) untreated and allogeneic chondrocytes; 2) multi-layered scaffold with and without cells; and 3) randomly aligned scaffold with and without cells. After four months of follow-up, the outcome was assessed using histology and immunostaining.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 31 - 31
1 Feb 2020
Acuña A Samuel L Yao B Faour M Sultan A Kamath A Mont M
Full Access

Introduction. With an ongoing increase in total knee arthroplasty (TKA) procedural volume, there is an increased demand to improve surgical techniques to achieve ideal outcomes. Considerations of how to improve post-operative outcomes have included preservation of the infrapatellar fat pad (IPFP). Although this structure is commonly resected during TKA procedures, there is inconsistency in the literature and among surgeons regarding whether resection or preservation of the IPFP should be achieved. Additionally, information about how surgical handling of the IPFP influences outcomes is variable. Therefore, the purpose of this systematic review was to evaluate the influence of IPFP resection and preservation on post-operative flexion, pain, Insall-Salvati Ratio (ISR), Knee Society Score (KSS), patellar tendon length (PTL), and satisfaction in primary TKA. Methods. A systematic literature search was performed to retrieve all reports that evaluated IPFP resection or preservation during total knee arthroplasty (TKA). The following databases were queried: PubMed, EBSCO host, and SCOPUS, resulting in 488 unique reports. Two reviewers independently reviewed the studies for eligibility based on pre-established inclusion and exclusion criteria. A total of 11 studies were identified for final analysis. Patient demographics, type of surgical intervention, follow-up duration, and clinical outcome measures were collected and further analyzed. This systematic review reported on 11,996 total cases. Complete resection was implemented in 3,723 cases (31%), partial resection in 5,458 cases (45.5%), and preservation of the IPFP occurred in 2,815 cases (23.5%). Clinical outcome measures included patellar tendon length (PTL) (5 studies), knee flexion (4 studies), pain (6 studies), Knee Society Score (KSS) (3 studies), Insall-Salvati Ratio (ISR) (3 studies), and patient satisfaction (1 study). Results. There were no differences found following IPFP resection for patient satisfaction (p=0.92), ISR (all p-values >0.05), and KSS (all p-values >0.05). Mixed evidence was found for patellar tendon length, pain, and knee flexion following IPFP resection vs. preservation. Conclusion. Given the current literature and available data, there were several clinical outcome measures that indicated better patient results with preservation of IPFP during primary TKA in comparison to the resection of IPFP. Specifically, resection resulted in inferior outcomes for patellar tendon length, knee flexion, and pain measurements. However, more extensive research is needed to better determine that preservation is the superior surgical decision. This includes a need for more randomized controlled trials (RCTs). Future studies should focus on conditions in which preservation or resection of IPFP would be best indicated during TKA in order to establish guidelines for best surgical outcomes in those patients. For any figures or tables, please contact authors directly


Bone & Joint Research
Vol. 8, Issue 12 | Pages 582 - 592
1 Dec 2019
Sansone V Applefield RC De Luca P Pecoraro V Gianola S Pascale W Pascale V

Aims

The aim of this study was to systematically review the literature for evidence of the effect of a high-fat diet (HFD) on the onset or progression of osteoarthritis (OA) in mice.

Methods

A literature search was performed in PubMed, Embase, Web of Science, and Scopus to find all studies on mice investigating the effects of HFD or Western-type diet on OA when compared with a control diet (CD). The primary outcome was the determination of cartilage loss and alteration. Secondary outcomes regarding local and systemic levels of proteins involved in inflammatory processes or cartilage metabolism were also examined when reported.


Bone & Joint 360
Vol. 7, Issue 6 | Pages 2 - 8
1 Dec 2018
Murray IR Safran MR LaPrade RF


Bone & Joint Research
Vol. 7, Issue 3 | Pages 213 - 222
1 Mar 2018
Tang X Teng S Petri M Krettek C Liu C Jagodzinski M

Objectives

The aims of this study were to determine whether the administration of anti-inflammatory and antifibrotic agents affect the proliferation, viability, and expression of markers involved in the fibrotic development of the fibroblasts obtained from arthrofibrotic tissue in vitro, and to evaluate the effect of the agents on arthrofibrosis prevention in vivo.

Methods

Dexamethasone, diclofenac, and decorin, in different concentrations, were employed to treat fibroblasts from arthrofibrotic tissue (AFib). Cell proliferation was measured by DNA quantitation, and viability was analyzed by Live/Dead staining. The levels of procollagen type I N-terminal propeptide (PINP) and procollagen type III N-terminal propeptide (PIIINP) were evaluated with enzyme-linked immunosorbent assay (ELISA) kits. In addition, the expressions of fibrotic markers were detected by real-time polymerase chain reaction (PCR). Fibroblasts isolated from healthy tissue (Fib) served as control. Further, a rabbit model of joint contracture was used to evaluate the antifibrotic effect of the three different agents.


The Bone & Joint Journal
Vol. 99-B, Issue 4 | Pages 483 - 488
1 Apr 2017
Pinsornsak P Nangnual S Boontanapibul K

Aims

Multimodal infiltration of local anaesthetic provides effective control of pain in patients undergoing total knee arthroplasty (TKA). There is little information about the added benefits of posterior capsular infiltration (PCI) using different combinations of local anaesthetic agents. Our aim was to investigate the effectiveness of the control of pain using multimodal infiltration with and without infiltration of the posterior capsule of the knee.

Patients and Methods

In a double-blind, randomised controlled trial of patients scheduled for unilateral primary TKA, 86 were assigned to be treated with multimodal infiltration with (Group I) or without (Group II) PCI. Routine associated analgesia included the use of bupivacaine, morphine, ketorolac and epinephrine. All patients had spinal anaesthesia and patient-controlled analgesia (PCA) post-operatively. A visual analogue scale (VAS) for pain and the use of morphine were recorded 24 hours post-operatively. Side effects of the infiltration, blood loss, and length of stay in hospital were recorded.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 152 - 152
1 Jan 2016
Sekiya H Takatoku K Takada H Kanaya Y Sasanuma H
Full Access

From October 2005 to March 2014, we performed 46 arthroscopic surgeries for painful knee after knee arthroplasty. We excluded 16 cases for this study such as, unicompartmental knee arthroplasty, infection, patellar clunk syndrome, patellofemoral synovial hyperplasia, aseptic loosening, and follow-up period after arthroscopic surgery less than 6 months. Thirty cases matched the criteria. They had knee pain longer than 6 months after initial total knee arthroplasty (TKA), they had marked tenderness at medial and/or lateral tibiofemoral joint space, and also they complained walking pain with or without resting pain. Twenty one cases had initial TKA at our institute. In consideration of total number of TKA (n=489) in the period at our institute, incident rate of painful knee after initial TKA was 4.3%. Of 30 cases, 3 cases were male, and 27 cases were female. Types of implant were 4 in cruciate retaining type, 1 in cruciate substituting type, and 25 in posterior stabilized type. Age at the arthroscopy was 72 years old (51–87 years old), and period form initial TKA to pain perception was 18 months(1 – 144 months), and period from initial TKA to arthroscopic surgery was 29 months (6 – 125 months), and follow-up period after arthroscopy was 36 months (6 – 93 months). All arthroscopic debridement were performed through 3 portals, anteromedial, anterolateral, and proximal superomedial portal. Scar tissue impingements more than 5 mm wide were found in 87% of the cases both medial and lateral femorotibial joint spaces. Infrapatellar fat pad were covered with whitish scar tissue in all cases, and the scar tissue were connecting with the scar tissue which found at medial or lateral femorotibial joint spaces. We removed all scar tissue with motorized shaver or punches. At final follow-up, complete pain free in 63%, marked improvement in 3%, half improvement in 20%, slight improvement in 3%, and no change in 10% of the cases. Previously in the literatures, two reasons of the pain after total knee arthroplasty had been reported, patellar clunk syndrome, and patellar synovial hyperplasia. All cases reported this study had marked tenderness at tibiofemoral joint space. It was difficult to explain the tenderness by previously reported pathological mechanisms. We had to find another pathological mechanism to explain the pain of our cases. Painful knee due to scar tissue formation known as “infrapatellar contracture syndrome” after anterior cruciate ligament reconstruction surgery was previously reported. We hypothesized similar scar tissue formation should occur after TKA that caused painful knee. Continuity of the solid scar tissue between infrapatellar fat pad with the scar tissue at tibiofemoral joint space should be the cause of impingement at femorotibial joint even small size of scar tissue. From this study, we have to recognize that painful knee after TKA is not infrequent complication. And, if we could deny infection, and aseptic loosening in painful knee after TKA, arthroscopic debridement was good option to solve the pain. We could expect improvement of the pain more than half in 87% of cases