Advertisement for orthosearch.org.uk
Results 1 - 20 of 35
Results per page:
Bone & Joint Open
Vol. 4, Issue 6 | Pages 432 - 441
5 Jun 2023
Kahlenberg CA Berube EE Xiang W Manzi JE Jahandar H Chalmers BP Cross MB Mayman DJ Wright TM Westrich GH Imhauser CW Sculco PK

Aims

Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model.

Methods

We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 51 - 51
17 Apr 2023
Al-Musawi H Sammouelle E Manara J Clark D Eldridge J
Full Access

The aim is to investigate if there is a relation between patellar height and knee flexion angle. For this purpose we retrospectively evaluated the radiographs of 500 knees presented for a variety of reasons.

We measure knee flexion angle using a computer-generated goniometer. Patellar height was determined using computer generated measurement for the selected ratios, namely, the Insall–Salvati (I/S), Caton–Deschamps (C/D) and Blackburne–Peel (B/P) indices and Modified I/S Ratio.

A search of an NHS hospital database was made to identify the knee x rays for patients who were below the age of forty. A senior knee surgeon (DC) supervised three trainee trauma and orthopaedics doctors (HA, JM, ES) working on this research. Measurements were made on the Insall–Salvati (I/S), Caton–Deschamps (C/D) and Blackburne–Peel (B/P) indices and Modified I/S Ratio. The team leader then categorised the experimental measurement of patients’ knee flexion angle into three groups. This categorisation was according to the extent of knee flexion. The angles were specifically, 10.1 to 20, 20.1 to 30, and 30.1 to 40 degrees of knee flexion.

Out of the five-hundred at the start of the investigation, four hundred and eighteen patients were excluded because they had had either an operation on the knee or traumatic fracture that was treated conservatively.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 42 - 42
1 Mar 2021
Williams S Jones A Wilcox R Isaac G Traynor A Board T Williams S
Full Access

Abstract. Objectives. Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement. Methods. A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded. Results. There was found to be a significant (p<0.05) inverse relationship between the ROM of the THR and the lateral measure of the AIIS. Of the three measures, the lateral AIIS measure showed the strongest relationship with ROM to impingement (R=0.73) with the anterior and superior measures resulting in R values of 0.41 and 0.56 respectively. For every millimetre lateral the AIIS location, there was typically a loss of 1.2° of range of motion. With increasing lateralisation, the AIIS was positioned more directly over the femur, thereby reducing the ROM in the THR during high flexion positions. No soft tissue was included in the models which would have affected the ROM. Conclusions. The results from this study have shown that the lateral measure of the AIIS could be a predictor for bone-on-bone impingement. To build confidence, wider study of AIIS location variation is needed, as well as analysis under impingement prone activities of daily living. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 45 - 45
1 Apr 2019
Athwal K Chan V Halewood C Amis A
Full Access

Introduction

Pre-clinical assessment of total knee replacements (TKR) can provide useful information about the constraint provided by an implant, and therefore help the surgeon decide the most appropriate configurations. For example, increasing the posterior tibial slope is believed to delay impingement in deep flexion and thus increase the maximal flexion angle of the knee, however it is unclear what effect this has on anterior-posterior (AP) constraint.

The current ASTM standard (F1223) for determining constraint gives little guidance on important factors such as medial- lateral (M:L) loading distribution, flexion angle or coupled secondary motions. Therefore, the aim of the study was to assess the sensitivity of the ASTM standard to these variations, and investigate how increasing the posterior tibial slope affects TKR constraint.

Methods

Using a six degree of freedom testing rig, a cruciate-retaining TKR (Legion; Smith & Nephew) was tested for AP translational constraint. In both anterior and posterior directions, the tibial component was displaced until a ‘dislocation limit’ was reached (fig. 1), the point at which the force-displacement graph started to plateau (fig. 2). Compressive joint loads from 710 to 2000 N, and a range of medial-lateral (M:L) load distributions, from 70:30% to 30:70% M:L, were applied at different flexion angles with secondary motions unconstrained. The posterior slope of the tibial component was varied at 0°, 3°, 6° and 9°.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 2 - 2
1 Apr 2019
Okamoto Y Otsuki S Okayoshi T Wakama H Murakami T Nakagawa K Neo M
Full Access

Although the pre- or intraoperative flexion angle in TKA has been commonly considered as a predictor of the postoperative flexion angle, patients with well flexion intraoperatively cannot necessarily obtain deep flexion angle postoperatively. The reason why inconsistencies remains has been unsolved. The intraoperative compressive force between femoral and tibial components has the advantage of the sequential changes during knee motion. However, the relationship between the compressive force and the postoperative ROM has not yet been clarified. We aimed to evaluate the intraoperative femorotibial compressive force during passive knee motion, and determine the relationship between the compressive force and the postoperative flexion angle.

A total of 11 knees in 10 patients who underwent primary cruciate-retaining (CR) TKA (The FINE Total Knee System; Teijin Nakashima Medical Co., Ltd., Okayama, Japan) for osteoarthritis were studied retrospectively, with a mean age of 76 years via a measured resection technique. We developed a customized measurement device mimicking the tibial component with this platform of six load sensors arranged in two rows (medial and lateral) by three tandem sets (anterior, center and posterior): anteromedial (AM), anterolateral (AL); centromedial (CM), centrolateral (CL); and posteromedial (PM), posterolateral compartment (PL) (Fig. 1). At the step of the implant trial, this device was placed on the tibia with compressive force recorded three times, while the knee was subsequently taken from 0° to full flexion manually in 15 seconds with the flexion angle of the knee recorded simultaneously by using an electric goniometer (Fig. 2). Eligibility were evaluated for ROM using a long-armed goniometer preoperatively and at 6 months postoperatively. A p value of < 0.05 was considered significant.

The mean compressive force at AM, AL, CM, CL, PM and PL was 0.7, 0.5, 1.3, 1.2, 3.4 and 2.6 kgf, with the peak force of 4.2, 2.5, 4.1, 2.5, 7.3 and 4.7 kgf, respectively. The mean pre- and postoperative extension and flexion angles were −11° and −6°; and 115° and 113°, respectively. There were no significant correlations between the mean force in any region of interest (AM to PL) and the postoperative flexion angle. The peak force in PM showed little correlation with the postoperative flexion angle (r = −0.17, p = 0.54), however, that in PL was strongly negatively correlated with the postoperative flexion (r = −0.86, p < 0.01).

The current results suggest the presence of less force on the lateral side in flexion. We speculate that lower compressive force at the lateral side is essential for deep flexion as it has been reported that the lateral structure has more laxity than the medial side during flexion in healthy knees. Measurement between the femoral and tibial compressive force can contribute an achievement of more flexion angle following CR-TKA.


The Bone & Joint Journal
Vol. 100-B, Issue 12 | Pages 1585 - 1591
1 Dec 2018
Kaneko T Kono N Mochizuki Y Hada M Sunakawa T Ikegami H Musha Y

Aims

Patellofemoral problems are a common complication of total knee arthroplasty. A high compressive force across the patellofemoral joint may affect patient-reported outcome. However, the relationship between patient-reported outcome and the intraoperative patellofemoral contact force has not been investigated. The purpose of this study was to determine whether or not a high intraoperative patellofemoral compressive force affects patient-reported outcome.

Patients and Methods

This prospective study included 42 patients (42 knees) with varus-type osteoarthritis who underwent a bi-cruciate stabilized total knee arthroplasty and in whom the planned alignment was confirmed on 3D CT. Of the 42 patients, 36 were women and six were men. Their mean age was 72.3 years (61 to 87) and their mean body mass index (BMI) was 24.4 kg/m2 (18.2 to 34.3). After implantation of the femoral and tibial components, the compressive force across the patellofemoral joint was measured at 10°, 30°, 60°, 90°, 120°, and 140° of flexion using a load cell (Kyowa Electronic Instruments Co., Ltd., Tokyo, Japan) manufactured in the same shape as the patellar implant. Multiple regression analyses were conducted to investigate the relationship between intraoperative patellofemoral compressive force and patient-reported outcome two years after implantation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 76 - 76
1 Mar 2017
Walker P Meere P Salvadore G Oh C Chu L
Full Access

INTRODUCTION. Ligament balancing aims to equalize lateral and medial gaps or tensions for optimal functional outcomes. Balancing can now be measured as lateral and medial contact forces during flexion (Roche 2014). Several studies found improved functional outcomes with balancing (Unitt 2008; Gustke 2014a; Gustke 2014b) although another study found only weak correlations (Meneghini 2016). Questions remain on study design, optimal lateral-medial force ratio, and remodeling over time. Our goals were to determine the functional outcomes between pre-op and 6 months post-op, and determine if there was a range of balancing parameters which gave the highest scores. METHODS. This IRB study involved a single surgeon and the same CR implant (Triathlon). Fifty patients were enrolled age 50–90 years. A navigation system was used for alignments. Balancing aimed for equal lateral and medial contact forces throughout flexion, using various soft tissue releases (Meneghini 2013; Mihalko 2015). The patients completed a Knee Society evaluation pre-op, 4 weeks, 3 months and 6 months. The total (medial+lateral) force, and the medial/(medial+lateral) force ratio was calculated for 4 flexion angles and averaged. These were plotted against Pain, Satisfaction, Delta Function (postop – preop), and Delta Flexion Angle. The data was divided into 2 groups. 1. By balancing parameters. T-Test for differences in outcomes between the 2 groups. 2. By outcome parameters. T-Test for differences in Balancing Parameters between the two groups. RESULTS. Ranges were: Balancing Parameters; Total Force 19–70 lbs; the Force Ratio 0.34 to 0.75. Outcome Measures; Pain 11–25, Satisfaction 15–40, Delta Function −20–70, Delta Flexion −3–29. The only significance was that higher Delta Flexion was associated with a higher Force Ratio. An unpaired t-test was carried out for cases with a balancing ratio between 0.48–0.68 versus cases outside that band (Fig 1). The mean gains were 27.2+/−20 versus 18.8+/−18.5. However the difference at p=0.104 was not significant, due to the large standard deviation. An odds ratio calculation was carried out for the above range, and 35 points Delta Function (Figure 2). The range of 0.48–0.68 and a gain of 35 was determined by optimizing. For patients in the balancing range, 39% achieved that; for patients outside the range, only 8% (Figure 2). This gave an odds ratio of 4.9 that within the balancing range 0.45–0.68, there would be a functional gain of 35 points or more. DISCUSSION. A striking characteristic of the data was the wide range of the functional scores and the narrow band of balancing parameters. This explained the lack of significance between the sets of 2 groups, which might have demonstrated an association of higher scores with high or low balancing values or ranges. However by reverting to an odds ratio analysis, in this case for gain in functional score, there was a suggestion that a certain balancing range provided the best functional results. This suggests that the best average balancing target for surgery is around 0.58 (higher medial force than lateral) rather than 0.5. However further studies and longer follow-up will be needed to verify this. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 52 - 52
1 Feb 2017
Kato T Sako S Ito Y Iwata A
Full Access

Introduction

Hip-Spine syndrome has various clinical aspects. For example, schoolchild with severe congenital dislocation of the hip have unfavorable standing posture and disadvantageous motions in ADL. Hip-Spine syndrome is closely related closely as the adjacent lumbar vertebrae and the hip joint. Furthermore, not only the pelvis and the lumbar spine, but also the neck position might influence on the maximum hip flexion angle. In this study, we examined the maximum hip flexion angle and pelvic movement angle by observing the lumbar spine, the pelvis and the neck in three different positions.

Subjects and Methods

The participants were five healthy volunteers (three males and two females) and ranged in age from 16 to 49 years. We measured the hip flexion angle (=∠X) and the pelvic tilt angle (=∠Y), using Zebris WinData and putting the six markers on skin. The positions of the marker are Femur lateral condyle (M1), Greater trochanter (M2), Lateral margin of 10th rib (M3), Anterior superior iliac spine (M4), Superior lateral margin of Iliac (M5), and Acromion (M6). We performed maximum hip flexion three times in three positions and measured ∠X (=∠M1,2,3) and ∠Y (=∠M4,5,6) and calculated the mean and SD of each position. The first position (P1) that we investigated is the regular position specified by the Japanese Orthopedics Association and Rehabilitation Medical Association. The second position (P2) is performed in the limited position of the posterior pelvic tilt and lumbar movement, by placing the tube under the subject's lower back. The third position (P3) is the altered limited position of P2 added by placing the 500ml PET bottle filled water under the back of the subject's neck.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 45 - 45
1 Feb 2017
Kaneko T Hada M Toyoda S Sunakawa T Ikegami H Mochizuki Y Musha Y
Full Access

INTRODUCTION

Normal kinematics have not been achieved in TKA design. Recently, knee simulation studies have suggested that a medial pivot TKA can achieve the anatomic pathway that reduce mid-flextion rollback and increase lateral rotation. However, the influence of postoperative flextion angle associated with medial tightness for guide motion TKA remains poorly understood. The purpose of this study was to investigate the effect of postoperative flextion angle and clinical outcomes associated with tightness for medial component gap (MCP).

METHODS

We evaluated 79 patients who underwent 84 medial pivot The Journey.2. Bi-Cruciate Substituting (BCS) TKA using the measured resection tequnique, from June 2014 to March 2016. We measured the gaps after implantation from extension to full flextion with reduced patella by constant distraction force (120N). A new tensor has the same articular shapes as that the tibial liner, including anterior and posterior structure.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 27 - 27
1 Feb 2017
Iriuchishima T Ryu K
Full Access

Purpose. the purpose of this study was to compare the rollback ratio in the bi-cruciate substituting BCS-TKA and the Oxford UKA. Methods. 20 subjects (28 knees) who were performed the BCS-TKA (Journey II: Smith and Nephew) and 24 subjects (29 knees) who were performed the Oxford UKA, were included in this study. Approximately 6 months after surgery, and when the subjects recovered their range of knee motion, following the Laidlow's method (The knee 2010), lateral radiographic imaging of the knee was performed with active full knee flexion. The most posterior tibiofemoral contact point was measured for evaluation of femoral rollback (Rollback ratio). Flexion angle was also measured using the same radiograph and the correlation of rollback and flexion angle was analyzed. As a control, radiographs of the contralateral knees of who were performed Oxford UKA were evaluated (29 knees). Results. The rollback ratios of the BCS-TKA, Oxford UKA, and the control knees were 37.9±4.9%, 35.7±4.2%, and 35.3±4.8% respectively from the posterior edge of the tibia. No significant difference in rollback ratio was observed. The flexion angles of the BCS-TKA, Oxford UKA, and the control knees were 121.8±8.4°, 125.4±7.5°, and 127±10.3°, respectively. No significant difference in knee flexion angle was observed. Significant correlation between rollback ratio and knee flexion angle was observed (p=0.002: Pearson's correlation coefficient =−0.384). Conclusion. In conclusion, BCS-TKA showed no significant difference of rollback ratio when compared with the control knees and the Oxford UKA knees. There is the possibility that the design of BCS-TKA could reproduce the native ACL and PCL function


Patellofemoral pain syndrome (PFPS) is a common knee disorder in active individuals. Movement dysfunction of valgus positioning at the knee during weight-bearing is frequently seen in PFPS. A single-leg squat (SLS) is a test commonly used in physiotherapy to assess for movement dysfunction. Kinesio-Tape (KT) is gaining in popularity in treating PFPS and claims to alter muscle recruitment and motor control, however evidence is weak. Objective: To evaluate the effect of KT applied to the quadriceps on muscle activity with electromyography (EMG) of the rectus femoris, vastus lateralis and vastus medialis oblique and motor control via the frontal plane projection angle (FPPA) using 2-dimensional video analysis.

A convenience sample of healthy females were recruited and performed 5 single-leg squats with and without KT. EMG of the quadriceps was recorded and dynamic valgus assessed via the FPPA using Dartfish video analysis software. Eccentric and concentric EMG data was recorded and the FPPA measured in single-leg stance and the depth of the squat. Institutional ethical approval was obtained for the study.

16 active females were assessed (mean age 28.94 +6.58 years). Wilcoxon signed-rank tests found no significant change in eccentric or concentric EMG of the quadriceps (%MVC) with KT compared to without (p values 0.35–0.86). Paired-sample t-tests found no significant difference in FPPA between conditions in single-leg stance (p=1.00) or the depth of the squat (p=0.871).

KT did not affect EMG activity of the quadriceps or the FPPA in a SLS when applied to the quadriceps of healthy females, questioning proposed effects of KT on normal muscle tissue. Further research is required into the efficacy of using KT in physiotherapy.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 126 - 126
1 May 2016
Weijia C Nagamine R
Full Access

Purpose

Factors influencing flexion angle of the knee before and after PS-TKA were assessed.

Methods

In 368 PS-TKA cases (71 males and 297 females) by means of modified gap control technique with Stryker NRG system, multi-variance analysis was performed to assess factors influencing flexion angle before TKA and flexion angle 3 weeks after TKA. Their mean age was 74.1 years old. Operative techniques and angle of the components were included as the factors.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 38 - 38
1 May 2016
Higashi H Kaneyama R Shiratsuchi H Oinuma K Miura Y Tamaki T Jonishi K Yoshii H
Full Access

Objective

In Total Knee Arthroplasty (TKA), it is important to adjust the difference of the flexion-extension gap (gap difference) to get the good range of motion and the sufficient stability. However the effect of the gap adjustment on the post-operative knee flexion angle(KFA) is unknown. We investigated the relationship between the gap difference and the postoperative KFA improvement rate.

Methods

179 knees that underwent LCS RP TKA were investigated more than 6 months after surgery(Feb/2013∼Sep/2014). The patients were 49 men and 130 women, of average age 70.6 years (50∼88) and BMI 26.3 (17.0∼55.2). Among them, 175 knees were knee osteoarthritis and 2 joints were rheumatoid arthritis, 2 joints were avascular necrosis. The extension gap was typically prepared with a measured resection, and a small temporary flexion bone gap was prepared with a 4mm resection of the femoral posterior condyle using the pre-cut method(fig 1). Then we measured the gaps under the installation of the Pre-cut Trial(PT; Kaneyama 2011)by the off-set spacer with 1mm increments in patella reduction position(fig 2,3). The final amount of bone resection was determined by comparison of the measured gaps and gaps required for implantation. We calculated the differences between the final extension gap and the final flexion gap and their relationship with knee flexion angles at 6 months postoperatively were analyzed.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 74 - 74
1 May 2016
Nakano N Matsumoto T Muratsu H Takayama K Kuroda R Kurosaka M
Full Access

Introduction / Purpose

Many factors can influence postoperative knee flexion angle after total knee arthroplasty (TKA), and range of flexion is one of the most important clinical outcomes. Although many studies have reported that postoperative knee flexion is influenced by preoperative clinical conditions, the factors which affect postoperative knee flexion angle have not been fully elucidated. As appropriate soft-tissue balancing as well as accurate bony cuts and implantation has traditionally been the focus of TKA success, in this study, we tried to investigate the influence of intraoperative soft-tissue balance on postoperative knee flexion angle after cruciate-retaining (CR) TKA using a navigation system and offset-type tensor.

Methods

We retrospectively analyzed 55 patients (43 women, 12 men) with osteoarthritis who underwent TKA using the same mobile-bearing CR-type implant (e.motion; B. Braun Aesculap, Germany). The mean age at the time of surgery was 74.2 (SD 7.3) years. The exclusion criteria for this study included valgus deformity, severe bony defect requiring bone graft or augmentation, revision TKA, active knee joint infection, and bilateral TKA. Intraoperative soft-tissue balance parameters such as varus ligament balance and joint component gap were measured in the navigation system (Orthopilot 4.2; B. Braun Aesculap) while applying 40-lb joint distraction force at 0°, 10°, 30°, 60°, 90°, and 120° of knee flexion using an offset-type tensor with the patella reduced. Varus ligament balance was defined as the angle (degree, positive value in varus imbalance) between the seesaw and platform plates of the tensor that was obtained from the values displayed by the navigation system. To determine clinical outcome, we measured knee flexion angle using a goniometer with the patient in the supine position before and 2 years after surgery. Correlations between the soft-tissue parameters and postoperative knee flexion angle were analyzed using simple linear regression models. Pre- and postoperative knee flexion angle were also analyzed in the same manner.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 63 - 63
1 May 2016
Jenny J Bureggah A Diesinger Y
Full Access

INTRODUCTION

Measurement of range of motion is a critical item of any knee scoring system. Conventional measurements used in the clinical settings are not as precise as required. Smartphone technology using either inclinometer application or photographic technology may be more precise with virtually no additional cost when compared to more sophisticated techniques such as gait analysis or image analysis. No comparative analysis between these two techniques has been previously performed. The goal of the study was to compare these two technologies to the navigated measurement considered as the gold standard.

MATERIAL

Ten patients were consecutively included. Inclusion criterion was implantation of a TKA with a navigation system.


Introduction

In the previous study regarding the relationship among maximum hip flexion, the pelvis, and the lumbar vertebrae on the sagittal plane, we have found in X-rays that the lumbo lordotic angle (LLA) and the sacral slope angle (SSA) have a large impact on hip flexion angle. We examined hip flexion angles to the various height of the objects (half round plastic tube) placed under the subject's lower back and compared the passive hip flexion angles in the supine position between younger and middle age groups.

Participants

The participants were 14 healthy volunteers: 7 females with an average age of 17 years (Group 1: G-1), 7 females with an average age of 45 years (Group 2: G-2). The average BMI (Body Mass Index) of volunteers was less than 25, and their Tomas Tests were negative.


The Bone & Joint Journal
Vol. 98-B, Issue 2 | Pages 194 - 200
1 Feb 2016
Tsukada S Wakui M Hoshino A

There is conflicting evidence about the benefit of using corticosteroid in periarticular injections for pain relief after total knee arthroplasty (TKA). We carried out a double-blinded, randomised controlled trial to assess the efficacy of using corticosteroid in a periarticular injection to control pain after TKA.

A total of 77 patients, 67 women and ten men, with a mean age of 74 years (47 to 88) who were about to undergo unilateral TKA were randomly assigned to have a periarticular injection with or without corticosteroid. The primary outcome was post-operative pain at rest during the first 24 hours after surgery, measured every two hours using a visual analogue pain scale score. The cumulative pain score was quantified using the area under the curve.

The corticosteroid group had a significantly lower cumulative pain score than the no-corticosteroid group during the first 24 hours after surgery (mean area under the curve 139, 0 to 560, and 264, 0 to 1460; p = 0.024). The rate of complications, including surgical site infection, was not significantly different between the two groups up to one year post-operatively.

The addition of corticosteroid to the periarticular injection significantly decreased early post-operative pain. Further studies are needed to confirm the safety of corticosteroid in periarticular injection.

Take home message: The use of corticosteroid in periarticular injection offered better pain relief during the initial 24 hours after TKA.

Cite this article: Bone Joint J 2016;98-B:194–200.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 22 - 22
1 Jan 2016
Aratake M Mitsugi N Taki N Ota H Shinohara K Sasaki Y Saito T
Full Access

Introduction. Selection of an optimum thickness of polyethylene insert in total knee arthroplasty (TKA) is important for the good stability and range of motion (ROM). The purpose of this study is to investigate the amount of change of ROM as the thickness of trial insert increase. Material and Method. The study included 86 patients with 115 knees undergoing TKA from October 2012 to February 2014. There were 17 men and 69 women with an average age of 75±8 (58–92) years. The implants posterior stabilized knee (Scorpio NRG, Stryker) was used and all prostheses were fixed with cement. The ROM was measured by the goniometer under the general anesthesia at the time of operation in increments of 1°. Preoperative flexion angle was measured by passively flexing the patient's hip 90 degrees and allowing the weight of the leg to flex the knee joint (Lee et al 1998). Extension angle was measured by holding the heel and raising the leg by another examiner. During TKA, flexion and extension angle was measured in a similar manner when each insert trial (8, 10, 12, and 15mm) was inserted. After the wound closure and removing the draping, ROM was measured again. Statistical analysis of range of motion was performed using a paired t-test to determine significance. Results. Preoperative extension angle was-11.8±7.5°and flexion angle was 125.4±14.9 °. postoperative extension angle after removing drapes was −5.0±3.4°and flexion angle was126.4±8.8°. Although extension angle was improved statistically (p<0.001), flexion angle was not improved. Intraoperative extension and flexion angle that were measured with the same thick insert trial as the polyethylene insert finally selected was −3.7±3.0°and 120.8±9.8°respectively. The thickness of polyethylene insert finally set was 8mm (28knees), 10mm (58knee), 12mm (24 knee), and 15mm (5knee). The amount of deficit in extension ROM by changing the trial inserts those were measured intraoperatively were 2.5±2.2° (n=112, 8 to 10mm, p<0.01), 3.2±2.8° (n=80, 10 to 12mm, p< 0.01), and 4.7±2.5° (n=15, 12 to 15mm, p<0.01). Flexion angle was 0.6±4.3° (8 to 10mm, n.s), 1.5±4.0° (10 to 12mm, p=0.002), 2.6±4.0° (12 to 15mm, p=0.025). Discussion. Although it is important to select a sufficient thick polyethylene insert to prevent postoperative instability, excessive thick polyethylene can decrease ROM especially extension. In many type of prosthesis, thickness of polyethylene insert differs every 2 mm is prepared. In the current study, if the thickness of polyethylene is increased 2mm (8 to10mm and 10 to 12mm) or 3mm (12 to15mm), extension and flexion angle was decreased 2.5–4.7°and 0.6–2.6°respectively


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 97 - 97
1 Jan 2016
Ogawa T Takao M Sakai T Nishii T Sugano N
Full Access

Puropose. Three-dimensional (3D) templating based on computed tomography (CT) in total hip arthroplasty improves the accuracy of implant size. However, even when using 3D-CT preoperative planning, getting the concordance rate between planned and actual sizes to reach 100% is not easy. To increase the concordance rate, it is important to analyze the causes of mismatch; however, no such studies have been reported. This study had the following two purposes: to clarify the concordance rate in implant size between 3D-CT preoperative planning and actual size; and to analyze risk factors for mismatch. Materials and Methods. A single surgeon performed 149 THAs using Trident Cup and Centpillar Stem (Stryker) with CT-based navigation between September 2008 and August 2011. Minimal follow-up was 2 years. Patients with incomplete postoperative CT were excluded from this study. Based on these criteria, the study examined 124 hips in 111 patients (mean age, 60 years, mean BMI 23.2 kg/m2). The preoperative diagnosis was primary osteoarthritis in 8 hips, secondary osteoarthritis in 102 hips, osteonecrosis in 9 hips, rapidly destructive coxopathy in 4 hips and rheumatoid arthritis in 1 hip. We compared cup and stem sizes between preoperative planning and intraoperatively used components. Radiological evaluations were cortical index and canal flare index on preoperative X-rays. We evaluated preoperative planning and postoperative components for cup orientation, cup position, and stem alignment (anteversion, flexion and varus angle) on the CT-navigation system. Fixation of the stem was evaluated by X-ray radiography at 2 years postoperatively according to Engh's criteria. Statistical analysis was performed with the Mann-Whitney U test, and values of P<0.05 were considered statistically significant. Results and Discussion. The concordance rate in cup size between preoperative planning and used implants was 94.4% (117/124 hips) (CS group). A one-size larger cup was used in 4 hips (CO group), and a one-size smaller cup was implanted in 3 hips (CU group). No significant difference was seen between the CS group and the CO or CU groups in change of cup orientation and cup position from planning (P>0.05) (Table 1). The concordance rate of stem size between preoperative planning and used stem was 85.5% (106/124 hips) (SS group). A one-size larger stem than the plan was used in two hips (SO group), and a one-size smaller stem than the plan was implanted in 16 hips (SU group). Significant differences were seen between the SU and SS groups in flexion angle, varus angle, and canal flare index (P<0.05, Table 2). Extension or varus of the stem, or an increase in canal flare index, were risk factors for the used stem size being smaller than planned. On the latest follow-up X-rays, all 124 hips showed bone ingrown stability of the implants. Conclusion. The accuracy of implant size selection was 94.4% and 85.5% for the cup and stem, respectively. No factors associated with cup size mismatch were identified. Flexion angle, varus angle, and canal flare index were associated with stem size mismatch between preoperative planning and the actual used size


Bone & Joint Research
Vol. 5, Issue 1 | Pages 11 - 17
1 Jan 2016
Barlow JD Morrey ME Hartzler RU Arsoy D Riester S van Wijnen AJ Morrey BF Sanchez-Sotelo J Abdel MP

Aims

Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone.

Methods

A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.