Aims. Deciphering the genetic relationships between major depressive disorder (MDD) and osteoarthritis (OA) may facilitate an understanding of their biological mechanisms, as well as inform more effective treatment regimens. We aim to investigate the mechanisms underlying relationships between MDD and OA in the context of common genetic variations. Methods. Linkage disequilibrium score regression was used to test the genetic correlation between MDD and OA. Polygenic analysis was performed to estimate shared genetic variations between the two diseases. Two-sample bidirectional Mendelian randomization analysis was used to investigate causal relationships between MDD and OA. Genomic loci shared between MDD and OA were identified using cross-trait meta-analysis. Fine-mapping of transcriptome-wide associations was used to prioritize putatively causal genes for the two diseases. Results. MDD has a significant genetic correlation with OA (r. g. = 0.29) and the two diseases share a considerable proportion of causal variants. Mendelian randomization analysis indicates that genetic liability to MDD has a causal effect on OA (b. xy. = 0.24) and genetic liability to OA conferred a causal effect on MDD (b. xy. = 0.20). Cross-trait meta-analyses identified 29 shared genomic loci between MDD and OA. Together with fine-mapping of transcriptome-wide association signals, our results suggest that
Mice are increasingly used for fracture healing research because of the possibility to use transgenic animals to conduct research on the molecular level. Mice from both sexes can be used, however, there is no consensus in the literature if fracture healing differs between female and male mice. Therefore, the aim of the present study was to analyze the similarities and differences in endochondral fracture healing between female and male C57BL/6J mice, since this mouse strain is mainly used in bone research. For that purpose, 12-weeks-old female and male mice received a standardized femur midshaft osteotomy stabilized by an external fixator. Mice were euthanized 10 and 21 days after fracture and bone regeneration was analyzed by biomechanical testing, µCT analysis, histology, immunohistochemistry and gene expression analysis. At day 21, male mice displayed a significantly larger fracture callus than female mice accompanied by higher number of osteoclasts, higher tissue mineral density and absolute values of bone volume, whereas relative bone volume to tissue volume ratio did not differ between the groups. Biomechanical testing revealed significantly increased bending stiffness in both fractured and intact femurs from male vs. female mice, whereas relative bending stiffness of fractured femurs related to the intact femurs did not differ. 10 days after fracture, male mice display significantly more cartilage and less fibrous tissue area in the fracture callus than female mice, whereas bone area did not differ. On the molecular level, male mice displayed increased active β-catenin expression in the fracture callus, whereas
MicroRNA´s are regulatory sequences which influence the posttranscriptional synthesis of about 70% of protein encoding genes. In different studies, MicroRNA-146a (miR-146a) was associated with inflammatory and autoimmunological processes. In vitro it was shown, that miR-146a influences the bone metabolism by regulating differentiation of mesenchymal stem cells. The miR-146a deficient mouse starts to develop lymphoproliferative and myeloproliferative disease by 6–8 months of age. In this study, we investigate the influence of miR-146a deficiency on bone structure and stability dependent on age and gender. Material and Methods. Male and female mice of wild type (WT) and miR-146a deficient (KO) animals at the age of 2–3 and 5–7 month were analyzed Femur, Tibia and lumbar vertebra (LWK4) were dissected and used für structural analyses by microcomputer tomography (µCT). Parameters like bone volume/tissue volume, trabecular bone volume, trabecular thickness, number and separation as well as cortical thickness were determined. Biomechanical stability as load to failure testing was determined using torsional testing for the long bones and axial compression testing for the vertebra body. Statistical analysis was performed using Graph Pad Prism (Mann-Whitney-U-Test, significance: p<0.05). Results. Structural analyses of the bone structure in the long bones (femur, tibia) revealed a significant higher bone volume/tissue volume (BV/TV) and trabecular bone mass in the elder (5–7 month) miR-146a deficient female mice compared to the male group or wild type animals of either age. In the diaphysis of the femur a BV/TV of 21% was determined for the elder miR-146a deficient females compared to 9% BV/TV in the age matching WT group. These changes were due to an increase in trabecular thickness and trabecular number in this area. In contrast to that, the cortical thickness of all bones analyzed was lowered in the miR-146a deficient animals (male and female) compared to wild type. Biomechanical stability of long bones as well as the vertebra body of the older, female KO group was significantly lower compared to wild type bones. Femurs showed a maximal torque of 20Nmm compared to 34Nmm in the wild type group. The vertebra of the KO mice showed a maximal force at failure of 22N compared to 40N in the wild type group. Male groups and younger females revealed values comparable to wild type animals. Conclusion. The deficiency of miR-146a leads to an increase of trabecular bone in the long bones of female 5–7 month old mice, but to lowered biomechanical bone stability. If this is due to alterations in differentiation or proliferation of mesenchymal stem cells remains unclear and will be analyzed further. Additionally, gender relation of our observations points to the influence of female specific regulatory mechanisms like the involvement of
The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student Objectives
Methods
We report the presence of
Background/Objective: Since
Introduction: Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis, which appears to be caused by a melatonin signalling dysfunction proved recently in osteoblasts. This pathology occurs and progresses during the time of pre-puberty and puberty growth. This period is known to be under the hormonal control and coincides with many biological changes related to the secretion of estrogens, of which estradiol (E2) is the most active. The female prevalence of AIS disease is clearly evident. Indeed, in Quebec the spine deformities considered clinically significant (at least 11° of deformity) are found in a girl:boy ratio of approximately 2:1 for reduced scoliosis, and this ratio increases to 10:1 for scoliosis of more than 30o of deformation. However, the reason for this female prevalence as well as the role of estrogens and
Objective. Despite the current revolution in molecular medicine that has benefitted the treatment of certain diseases (Ross 2002), idiopathic scoliosis has resisted attempts to understand the molecular basis of its curve development. Lowe et al (2002) in a longitudinal study of 55 AIS patients concluded that platelet calmodulin levels correlate closely with curve progression and stabilization by bracing or spine fusion. They suggest that the platelet is a “minimuscle” with a protein contractile system (actin and myosin) similar to that of skeletal muscle. Using Lowe’s data we found that percentage platelet calmodulin change correlates significantly with percentage Cobb angle change (ANOVA, p=0.0003, n=54) that led us to suggest a platelet/skeletal hypothesis to account for their findings as part of a cascade concept for the pathogenesis of AIS. Hypothesis. The human immature vertebral body is unusual among mammals in lacking epiphyses. This may explain why an axial load transmitted directly from the intervertebral disc deforms mature vertebral body end-plates as an axial inward bulge (Brinckmann et al 1983). In immature normal vertebral bodies vascular “lakes” (resembling bunches of grapes) have been found adjacent to the disc growth plates in subjects aged 9 to 13 years of age (Mineiro 1965). These “lakes” may provide a susceptibility to platelet activation from vascular stasis and shear stresses. In addition to their role in hemostasis platelets contain many growth factors including TGF-βs in α-granules that are secreted at a fracture site (Bolander 1992). TGF-βs are found in human neonatal rib growth plates (Horner et al 1998) but, like