The application of immune regenerative strategies to deal with unsolved pathologies, such as tendinopathies, is getting attention in the field of tissue engineering exploiting the innate immunomodulatory potential of stem cells [1]. In this context, Amniotic Epithelial Cells (AECs) represent an innovative immune regenerative strategy due to their teno-inductive and immunomodulatory properties [2], and because of their high paracrine activity, become a potential stem cell source for a cell-free treatment to overcome the limitations of traditional cell-based therapies. Nevertheless, these immunomodulatory mechanisms on AECs are still not fully known to date. In these studies, we explored standardized protocols [3] to better comprehend the different phenotypic behavior between epithelial AECs (eAECs) and mesenchymal AECs (mAECs), and to further produce an enhanced immunomodulatory AECs-derived secretome by exposing cells to different stimuli. Hence, in order to fulfill these aims, eAECs and mAECs at third passage were silenced for CIITA and Nrf2, respectively, to understand the role of these molecules in an inflammatory response. Furthermore, AECs at first passage were seeded under normal or GO-coated coverslips to study the effect of GO on AECs, and further exposed to LPS and/or IL17 priming to increase the anti-inflammatory paracrine activity. The obtained results demonstrated how CIITA and Nrf2 control the immune response of eAECs and mAECs, respectively, under standard or immune-activated conditions (LPS priming). Additionally, GO exposition led to a faster activation of the Epithelial-Mesenchymal transition (EMT) through the TGFβ/SMAD signaling pathway with a change in the anti-inflammatory properties. Finally, the combinatory inflammatory stimuli of LPS+IL17 enhanced the paracrine activity and immunomodulatory properties of AECs. Therefore, AECs-derived secretome has emerged as a potential treatment option for inflammatory disorders such as tendinopathies. Acknowledgement: This research is part of the P4FIT project
Breast cancer is the most frequent malignancy in women with an estimation of 2.1 million new diagnoses in 2018. Even though primary tumours are usually efficiently removed by surgery, 20–40% of patients will develop metastases in distant organs. Bone is one of the most frequent site of metastases from advanced breast cancer, accounting from 55 to 58% of all metastases. Currently, none of the therapeutic strategies used to manage breast cancer bone metastasis are really curative. Tailoring a suitable model to study and evaluate the disease pathophysiology and novel advanced therapies is one of the major challenges that will predict more effectively and efficiently the clinical response. Preclinical traditional models have been largely used as they can provide standardization and simplicity, moreover, further advancements have been made with 3D cultures, by spheroids and artificial matrices, patient derived xenografts and microfluidics. Despite these models recapitulate numerous aspects of tumour complexity, they do not completely mimic the clinical native microenvironment. Thus, to fulfil this need, in our study we developed a new, advanced and alternative model of human breast cancer bone metastasis as potential biologic assay for cancer research. The study involved breast cancer bone metastasis samples obtained from three female patients undergoing wide spinal decompression and stabilization through a posterior approach. Samples were cultured in a TubeSpin Bioreactor on a rolling apparatus under hypoxic conditions at time 0 and for up to 40 days and evaluated for viability by the Alamar Blue test, gene expression profile, histology and immunohistochemistry. Results showed the maintenance and preservation, at time 0 and after 40 days of culture, of the tissue viability, biological activity, as well as molecular markers, i.e. several key genes involved in the complex interactions between the tumour cells and bone able to drive cancer progression, cancer aggressiveness and metastasis to bone. A good tis sue morphological and microarchitectural preservation with the presence of lacunar osteolysis, fragmented trabeculae locally surrounded by osteoclast cells and malignant cells and an intense infiltration by tumour cells in bone marrow compartment in all examined samples. Histomorphometrical data on the levels of bone resorption and bone apposition parameters remained constant between T0 and T40 for all analysed patients. Additionally, immunohistochemistry showed homogeneous expression and location of CDH1, CDH2, KRT8, KRT18, Ki67, CASP3,
Deciphering the genetic relationships between major depressive disorder (MDD) and osteoarthritis (OA) may facilitate an understanding of their biological mechanisms, as well as inform more effective treatment regimens. We aim to investigate the mechanisms underlying relationships between MDD and OA in the context of common genetic variations. Linkage disequilibrium score regression was used to test the genetic correlation between MDD and OA. Polygenic analysis was performed to estimate shared genetic variations between the two diseases. Two-sample bidirectional Mendelian randomization analysis was used to investigate causal relationships between MDD and OA. Genomic loci shared between MDD and OA were identified using cross-trait meta-analysis. Fine-mapping of transcriptome-wide associations was used to prioritize putatively causal genes for the two diseases.Aims
Methods
The objective of this study was to investigate the association of four single-nucleotide polymorphisms (SNPs) of the cannabinoid receptor 2 ( Chinese patients with OP were recruited between March 2011 and December 2015 from our hospital. In this study, a total of 1267 post-menopausal female patients (631 OP patients and 636 control patients) were selected. The mean age of all subjects was 69.2 years (sd 15.8). A generalized multifactor dimensionality reduction (GMDR) model and logistic regression model were used to examine the interaction between SNP and obesity on OP. For OP patient-control haplotype analyses, the SHEsis online haplotype analysis software (Objectives
Methods
The biomembrane (induced membrane) formed around polymethylmethacrylate (PMMA) spacers has value in clinical applications for bone defect reconstruction. Few studies have evaluated its cellular, molecular or stem cell features. Our objective was to characterise induced membrane morphology, molecular features and osteogenic stem cell characteristics. Following Institutional Review Board approval, biomembrane specimens were obtained from 12 patient surgeries for management of segmental bony defects (mean patient age 40.7 years, standard deviation 14.4). Biomembranes from nine tibias and three femurs were processed for morphologic, molecular or stem cell analyses. Gene expression was determined using the Affymetrix GeneChip Operating Software (GCOS). Molecular analyses compared biomembrane gene expression patterns with a mineralising osteoblast culture, and gene expression in specimens with longer spacer duration (> 12 weeks) with specimens with shorter durations. Statistical analyses used the unpaired student Objectives
Methods
Besides conventional chondrosarcoma, several rare chondrosarcoma subtypes are described, comprising about 15% of all chondrosarcomas. Clear cell chondrosarcoma (CCS) is a low-grade malignant tumour, often recurring after curettage, and showing overall survival of about 85%. Mesenchymal chondrosarcoma (MCS) is a highly malignant tumour occurring in bone and soft tissue of relatively young patients. The tumour shows differentiated cartilage mixed with undifferentiated small round cells. It often metastasises and shows a 5-year overall survival of 55%. Dedifferentiated chondrosarcoma (DDCS) is a tumour containing a high-grade non-cartilaginous sarcoma (DD), and a usually low-grade malignant cartilage-forming tumour (WD). The prognosis is poor. The lack of efficacious treatment of these rare tumours emphasises the need to learn more about their characteristics and to unravel potential targets for therapy. We constructed tissue microarrays (TMAs) with 2mm cores of 45 DDCS (WD and DD), 24 CCS, and 25 MCS, in triplicate. Using immunohistochemistry, we investigated protein expression of estrogen-signaling molecules, growth plate-signaling molecules, and other molecules which might be potential targets for therapy. In addition, we gathered genomic information using Agilent 44K oligo arrays. 30% of the WD components were positive for Cox-2. Almost all others were negative. For Bcl2, 88% of the small cells and 32% of the cartilage in MCS were positive. In CCS, WD, and DD 48%, 4%, and 12% were positive, respectively. We demonstrated the presence of