Advertisement for orthosearch.org.uk
Results 1 - 20 of 27
Results per page:
Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.


Bone & Joint Research
Vol. 12, Issue 8 | Pages 497 - 503
16 Aug 2023
Lee J Koh Y Kim PS Park J Kang K

Aims

Focal knee arthroplasty is an attractive alternative to knee arthroplasty for young patients because it allows preservation of a large amount of bone for potential revisions. However, the mechanical behaviour of cartilage has not yet been investigated because it is challenging to evaluate in vivo contact areas, pressure, and deformations from metal implants. Therefore, this study aimed to determine the contact pressure in the tibiofemoral joint with a focal knee arthroplasty using a finite element model.

Methods

The mechanical behaviour of the cartilage surrounding a metal implant was evaluated using finite element analysis. We modelled focal knee arthroplasty with placement flush, 0.5 mm deep, or protruding 0.5 mm with regard to the level of the surrounding cartilage. We compared contact stress and pressure for bone, implant, and cartilage under static loading conditions.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 2 - 2
1 Feb 2021
Pizzamiglio C Fattori A Rovere F Poon P Pressacco M
Full Access

Background. Stemless prostheses are recognized to be an effective solution for anatomic total shoulder arthroplasty (TSA) while providing bone preservation and shortest operating time. Reverse shoulder arthroplasty (RSA) with stemless has not showed the same effectiveness, as clinical and biomechanical performances strongly depend on the design. The main concern is related to stability and bone response due to the changed biomechanical conditions; few studies have analyzed these effects in anatomic designs through Finite Element Analysis (FEA), however there is currently no study analyzing the reverse configuration. Additionally, most of the studies do not consider the effect of changing the neck-shaft angle (NSA) resection of the humerus nor the proper assignment of spatial bone properties to the bone models used in the simulations. The aim of this FEA study is to analyze bone response and primary stability of the SMR Stemless prosthesis in reverse with two different NSA cuts and two different reverse angled liners, in bone models with properties assigned using a quantitative computed tomography (QCT) methodology. Methods. Sixteen fresh-frozen cadaveric humeri were modelled using the QCT-based finite element methodology. The humeri were CT-scanned with a hydroxyapatite phantom to allow spatial bone properties assignment [Fig. 1]. Two implanted SMR stemless reverse configurations were considered for each humerus: a 150°-NSA cut with a 0° liner and a 135°-NSA cut with a 7° sloped liner [Fig. 2]. A 105° abduction loading condition was simulated on both the implanted reverse models and the intact (anatomic) humerus; load components were derived from previous dynamic biomechanical simulations on RSA implants for the implanted stemless models and from the OrthoLoad database for the intact humeri. The postoperative bone volume expected to resorb or remodel [Fig. 3a] in the implanted humeri were compared with their intact models in sixteen metaphyseal regions of interest (four 5-mm thick layers parallel to the resection and four anatomical quadrants) by means of a three-way repeated measures ANOVA followed by post hoc tests with Bonferroni correction. In order to evaluate primary stability, micromotions at the bone-Trabecular Titanium interface [Fig. 3b] were compared between the two configurations using a Wilcoxon matched-pairs signed-rank test. The significance level α was set to 0.05. Results. With the exception of the most proximal layer (0.0 – 5.0 mm), the 150°-NSA configuration showed overall a statistically significant lower bone volume expected to resorb (p = 0.011). In terms of bone remodelling, the 150°-NSA configuration had again a better response, but fewer statistically significant differences were found. Regarding micromotions, there was a median decrease (Mdn = 3.2 μm) for the 135°-NSA configuration (Mdn = 40.3 μm) with respect to the 150°-NSA configuration (Mdn = 43.5 μm) but this difference was non-significant (p = 0.464). Conclusions. For the analyzed SMR Stemless configurations, these results suggest a reduction in the risk of bone resorption when a 0° liner is implanted with the humerus cut at 150°. The used QCT-based methodology will allow further investigation, as this study was limited to one single design and load case. For any figures or tables, please contact the authors directly


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1636 - 1645
1 Dec 2020
Lerch TD Liechti EF Todorski IAS Schmaranzer F Steppacher SD Siebenrock KA Tannast M Klenke FM

Aims

The prevalence of combined abnormalities of femoral torsion (FT) and tibial torsion (TT) is unknown in patients with femoroacetabular impingement (FAI) and hip dysplasia. This study aimed to determine the prevalence of combined abnormalities of FT and TT, and which subgroups are associated with combined abnormalities of FT and TT.

Methods

We retrospectively evaluated symptomatic patients with FAI or hip dysplasia with CT scans performed between September 2011 and September 2016. A total of 261 hips (174 patients) had a measurement of FT and TT. Their mean age was 31 years (SD 9), and 63% were female (165 hips). Patients were compared to an asymptomatic control group (48 hips, 27 patients) who had CT scans including femur and tibia available for analysis, which had been acquired for nonorthopaedic reasons. Comparisons were conducted using analysis of variance with Bonferroni correction.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 29 - 29
1 Feb 2020
Abe I Shirai C
Full Access

Background. Accurate acetabular cup positioning is considered to be essential to prevent postoperative dislocation and improve the long-term outcome of total hip arthroplasty (THA). Recently various devices such as navigation systems and patient-specific guides have been used to ensure the accuracy of acetabular cup positioning. Objectives. The present study evaluated the usefulness of CT-based three-dimensional THA preoperative planning for acetabular cup positioning. Methods. This study included 120 hips aged mean 68.3 years, who underwent primary THA using CT-based THA preoperative planning software ZedHip® (LEXI, Tokyo Japan) and postoperative CT imaging (Fig.1). The surgical approach adopted the modified Watson-Jones approach in the lateral decubitus position and Trident HA acetabular cups were used for all cases. Preoperatively the optimum cup size and position in the acetabular were decided using the ZedHip® software, taking into consideration femoral anteversion and to achieve the maximum range of motion in dynamic motion simulation. Radiographic inclination (RI) was selected in the range between 40°∼45° and radiographic anteversion (RA) in the range between 5°∼25°. Three-dimensional planning images of the cup positioning were obtained from the ZedHip® software, and the distances between the edge of the implant and anatomical landmarks such as the edge of the anterior or superior acetabular wall were measured on the three-dimensional images and recorded (Fig.2). Intraoperatively, the RI and RA were confirmed by reference to these distances and the acetabular cup was inserted. Relative positional information of the implant was extracted from postoperative CT imaging using the ZedHip® software and used to reproduce the position of the implant on preoperative CT imaging with the software image matching function. The difference between the preoperative planning and the actual implant position was measured to assess the accuracy of acetabular cup positioning using the ZedHip® software. Results. Actual cup size corresponded with that of preoperative planning in 95% of cases (114 hips). Postoperative mean RI was 42.3° ± 4.2° (95% confidence interval (CI), 41.5° ∼ 43.0°) and mean RA was 16.1° ± 5.9° (95%CI, 15.0° ∼ 17.1°). Deviation from the target RI was 4.2° ± 3.7° (95%CI, 3.5° ∼ 4.9°) and deviation from the target RA was 4.0° ± 3.6° (95%CI, 3.4° ∼ 4.7°). Overall 116 hips (96.7%) were within the RI safe zone (30° ∼ 50°) and 108 hips (90.0%) were within the RA safe zone (5° ∼ 25°), and 105 hips (87.5%) were within both the RI and RA safe zones (Fig.3). Mean cup shift from preoperative planning was 0.0mm ± 3.0mm to the cranial side in the cranio-caudal direction, 2.1mm ± 3.0mm to the anterior side in the antero-posterior direction, and 1.7mm ± 2.1mm to the lateral side in the medio-lateral direction. Conclusion. The accuracy of acetabular cup positioning using our method of CT-based three-dimensional THA preoperative planning was slightly inferior to reported values for CT-based navigation, but obviously superior to those without navigation and similar to those with portable navigation. CT-based three-dimensional THA preoperative planning is effective for acetabular cup positioning, and has better cost performance than expensive CT-based navigation. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 29 - 29
1 Feb 2020
Gustafson J Levine B Pourzal R Lundberg H
Full Access

Introduction. Improper seating during head/stem assembly can lead to unintended micromotion between the femoral head and stem taper—resulting in fretting corrosion and implant failure. There is no consensus—either by manufacturers or by the surgical community—on what head/stem taper assembly method maximizes modular junction stability in total hip arthroplasty (THA). A 2018 clinical survey found that orthopedic surgeons prefer applying one strike or three, subsequent strikes when assembling head/stem taper. However, it has been suggested that additional strikes may lead to decreased interference. Additionally, the taper surface finish—micro-grooves—has been shown to affect taper interference and may be influenced by assembly method. Objective. The objective of this study was to employ a novel, micro-grooved finite element (FEA) model of the hip taper interface and assess the role of head/stem assembly method—one vs three strikes—on modular taper junction stability. Methods. A two-dimensional, axisymmetric model representative of a CoCrMo femoral head taper and Ti6Al4V stem taper was created using median geometrical measurements taken from over 100 retrieved implants. Surface finish—micro-grooves—of the head/stem taper were modeled using a sinusoidal function with amplitude and period corresponding to median retrieval measurements of micro-groove height and spacing, respectively (“smooth” stem taper: height=2µm, spacing=50µm; “rough” stem taper: height=11µm, spacing=200µm; head taper: height=2µm, spacing=50µm). All models had a 3’ (0.05°), proximal-locked angular mismatch between the tapers. To simulate modular assembly during surgery, multiple dynamic loads (4kN, 8kN, and 12kN) were applied to the femoral head taper as either one or three sequence of strikes. The input load profile (Figure 1) used for both cases was collected from surgeons assembling an experimental setup with a three-dimensional load sensor. Models were assembled and meshed in ABAQUS Standard (v 6.17) using four-node linear hexahedral, reduced integration elements. Friction was modeled between the stem and head taper using surface-to-surface formulation with penalty contact (µ=0.2). A total of 12 implicit, dynamic simulations (3 loads x 2 assembly sequences x 2 stem taper surface finishes) were run, with 2 static simulations at 4kN for evaluating inertial effects. Outcome variables included contact area, contact pressure, equivalent plastic strain, and pull-off force. Results. As expected, increasing assembly load led to increased contact area, pressures, and plasticity for both taper finishes. Rough tapers exhibited less total contact area at each loading level as compared to the smooth taper. Contact pressures were relatively similar across the stem taper finishes, except the 3-strike smooth taper, which exhibited the lowest contact pressures (Figure 2) and pull-off forces. The models assembled with one strike exhibited the greatest contact pressures, pull-off forces, and micro-groove plastic deformation. Conclusion. Employing 1-strike loads led to greater contact areas, pressures, pull-off forces, and plastic deformation of the stem taper micro-grooves as compared to tapers assembled with three strikes. Residual energy may be lost with subsequent assembly strikes, suggesting that one, firm strike maximizes taper assembly mechanics. These models will be used to identify the optimal design factors and impaction method to maximize stability of modular taper junctions. For any figures or tables, please contact authors directly


Bone & Joint Research
Vol. 8, Issue 12 | Pages 593 - 600
1 Dec 2019
Koh Y Lee J Lee H Kim H Chung H Kang K

Aims

Commonly performed unicompartmental knee arthroplasty (UKA) is not designed for the lateral compartment. Additionally, the anatomical medial and lateral tibial plateaus have asymmetrical geometries, with a slightly dished medial plateau and a convex lateral plateau. Therefore, this study aims to investigate the native knee kinematics with respect to the tibial insert design corresponding to the lateral femoral component.

Methods

Subject-specific finite element models were developed with tibiofemoral (TF) and patellofemoral joints for one female and four male subjects. Three different TF conformity designs were applied. Flat, convex, and conforming tibial insert designs were applied to the identical femoral component. A deep knee bend was considered as the loading condition, and the kinematic preservation in the native knee was investigated.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 563 - 569
1 Nov 2019
Koh Y Lee J Lee H Kim H Kang K

Objectives

Unicompartmental knee arthroplasty (UKA) is an alternative to total knee arthroplasty with isolated medial or lateral compartment osteoarthritis. However, polyethylene wear can significantly reduce the lifespan of UKA. Different bearing designs and materials for UKA have been developed to change the rate of polyethylene wear. Therefore, the objective of this study is to investigate the effect of insert conformity and material on the predicted wear in mobile-bearing UKA using a previously developed computational wear method.

Methods

Two different designs were tested with the same femoral component under identical kinematic input: anatomy mimetic design (AMD) and conforming design inserts with different conformity levels. The insert materials were standard or crosslinked ultra-high-molecular-weight polyethylene (UHMWPE). We evaluated the contact pressure, contact area, wear rate, wear depth, and volumetric wear under gait cycle loading conditions.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 509 - 517
1 Nov 2019
Kang K Koh Y Park K Choi C Jung M Shin J Kim S

Objectives. The aim of this study was to investigate the biomechanical effect of the anterolateral ligament (ALL), anterior cruciate ligament (ACL), or both ALL and ACL on kinematics under dynamic loading conditions using dynamic simulation subject-specific knee models. Methods. Five subject-specific musculoskeletal models were validated with computationally predicted muscle activation, electromyography data, and previous experimental data to analyze effects of the ALL and ACL on knee kinematics under gait and squat loading conditions. Results. Anterior translation (AT) significantly increased with deficiency of the ACL, ALL, or both structures under gait cycle loading. Internal rotation (IR) significantly increased with deficiency of both the ACL and ALL under gait and squat loading conditions. However, the deficiency of ALL was not significant in the increase of AT, but it was significant in the increase of IR under the squat loading condition. Conclusion. The results of this study confirm that the ALL is an important lateral knee structure for knee joint stability. The ALL is a secondary stabilizer relative to the ACL under simulated gait and squat loading conditions. Cite this article: Bone Joint Res 2019;8:509–517


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_12 | Pages 13 - 13
1 Oct 2019
Gustafson JA Levine BR Jacobs JJ Pourzal R Lundberg HJ
Full Access

Introduction. Improper seating during head/stem assembly can lead to unintended micromotion between the femoral head and stem taper—resulting in fretting corrosion and implant failure. 1. There is no consensus—either by manufacturers or by the surgical community—on what head/stem taper assembly method maximizes modular junction stability in total hip arthroplasty (THA). A 2018 clinical survey. 2. found that orthopedic surgeons prefer applying one strike or three, subsequent strikes when assembling head/stem taper. However, it has been suggested that additional strikes may lead to decreased interference strength. Additionally, the taper surface finish—micro-grooves—has been shown to affect taper interference strength and may be influenced by assembly method. The objective of this study was to employ a novel, micro-grooved finite element (FEA) model of the hip taper interface and assess the role of head/stem assembly method—one vs three strikes—on modular taper junction stability. Methods. A two-dimensional, axisymmetric FEA model representative of a CoCrMo femoral head taper and Ti6Al4V stem taper was created using median geometrical measurements taken from over 100 retrieved implants. 3. Surface finish—micro-grooves—of the head/stem taper were modeled using a sinusoidal function with amplitude and period corresponding to retrieval measurements of micro-groove height and spacing, respectively. Two stem taper micro-groove geometries— “rough” and “smooth”—were modeled corresponding to the median and 5. th. percentile height and spacing measurements from retrievals. All models had a 3' (0.05°), proximal-locked angular mismatch between the tapers. To simulate implant assembly during surgery, multiple dynamic loads (4kN, 8kN, and 12kN) were applied to the femoral head taper in a sequence of one or three strikes. The input load profile (Figure 1) used for both cases was collected from surgeons assembling an experimental setup with a three-dimensional load sensor. Models were assembled and meshed in ABAQUS Standard (v 6.17) using four-node linear hexahedral, reduced integration elements. Friction was modeled between the stem and head taper using surface-to-surface formulation with penalty contact (µ=0.2). A total of 12 implicit, dynamic simulations (3 loads × 2 assembly sequences × 2 stem taper surface finishes) were run, with 2 static simulations at 4kN for evaluating inertial effects. Outcome variables included contact area, contact pressure, equivalent plastic strain, and pull-off force. Results. As expected, increasing assembly load led to increased contact area, pressures, and plasticity for both taper finishes. Rough tapers exhibited less total contact area at each loading level as compared to the smooth taper. Contact pressures were relatively similar across the stem taper finishes, except the 3-strike smooth taper, which exhibited the lowest contact pressures (Figure 2) and pull-off forces. The models assembled with one strike exhibited the greatest contact pressures, pull-off forces, and micro-groove plastic deformation (Figure 3). Conclusion. Employing 1-strike loads led to greater contact areas, pressures, pull-off forces, and plastic deformation of the stem taper micro-grooves as compared to tapers assembled with three strikes. Residual energy may be lost with subsequent assembly strikes, suggesting that one, firm strike maximizes taper assembly mechanics. These models will be used to identify the optimal design factors and impaction method to maximize stability of modular taper junctions. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 87 - 87
1 Apr 2019
Boruah S Muratoglu O Varadarajan KM
Full Access

Posterior stabilized (PS) total knee arthroplasty (TKA), wherein mechanical engagement of the femoral cam and tibial post prevents abnormal anterior sliding of the knee, is a proven surgical technique. However, many patients complain about abnormal clicking sensation, and several reports of severe wear and catastrophic failure of the tibial post have been published. In addition to posterior cam-post engagement during flexion, anterior engagement with femoral intercondylar notch can also occur during extension. The goal of this study was to use dynamic simulations to explore sensitivity of tibial post loading to implant design and alignment, across different activities. LifeModeler KneeSIM software was used to calculate tibial post contact forces for four contemporary PS implants (Triathlon PS, Stryker; Journey BCS and Legion PS, Smith & Nephew; LPS Flex, Zimmer Biomet). An average model of the knee, including cartilage and soft tissue insertion locations, created from MRI data of 40 knees was used to mount and align the component. The Triathlon femoral component was mounted with posterior and distal condylar tangency at: a) both medial and lateral condylar cartilage (anatomic alignment), b) at the medial condylar cartilage and perpendicular to mechanical axis (mechanical alignment with medial tangency), and c) at lateral condylar cartilage and perpendicular to mechanical axis (mechanical alignment with lateral tangency). The influence of implant design was assessed via simulations for the other implant systems with the femoral components aligned perpendicular to mechanical axis with lateral tangency. Five different activities were simulated. The anterior contact force was significantly smaller than the posterior contact force, but it varied noticeably with tibial insert slope and implant design. For Triathlon PS, during most activities anatomic alignment of the femoral component resulted in greater anterior contact force compared to mechanical alignment, but absolute magnitude of forces remained small (<100N). Mechanical alignment with medial tangency resulted in greater posterior contact force for deep knee bend and greater anterior force for chair sit activity. For all implants, peak posterior contact forces were greater for activities with greater peak knee flexion. The magnitude of posterior contact forces for the various implants was comparable to other reports in literature. Overall activity type, implant design and slope had greater impact on post loading than alignment method. Tibial insert slope was shown to be important for anterior post loading, but not for posterior post loading. Anatomic alignment could increase post loading with contemporary TKA systems. In the case of the specific design for which effect of alignment was evaluated, the changes in force magnitude with alignment were modest (<200N). Nonetheless, results of this study highlight the importance of evaluating the effect of different alignment approaches on tibial post loading


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 126 - 126
1 Apr 2019
Elliott MT King R Wang X Qureshi A Vepa A Rahman U Palit A Williams MA
Full Access

Background. Over 10% of total hip arthroplasty (THA) surgeries performed in England and Wales are revision procedures. 1. Malorientation of the acetabular component in THA may contribute to premature failure. Yet with increasingly younger populations receiving THA surgery (through higher incidences of obesity) and longer life expectancy in general, the lifetime of an implant needs to increase to avoid a rapid increase in revision surgery in the future. The Evaluation of X-ray, Acetabular Guides and Computerised Tomography in THA (EXACT) trial is assessing the pelvic tilt of a patient by capturing x-rays from the patient in sitting, standing and step-up positions. It uses this information, along with a CT scan image, to deliver a personalised dynamic simulation that outputs an optimised position for the hip replacement. A clinical trial is currently in place to investigate how the new procedure improves patient outcomes. 2. . Our aim in this project was to assess whether accurate functional assessment of pelvic tilt could be further obtained using inertial measurement units (IMUs). This would provide a rapid, non-invasive triaging method such that only patients with high levels of tilt measured by the sensors would then receive the full assessment with x-rays. Methods. Recruited patients were fitted with a bespoke device consisting of a 3D-printed clamp which housed the IMU and fitted around the sacrum area. A wide elastic belt was fitted around the patient's waist to keep the device in place. Pelvic tilt is measured in a standing, flexed seated and step-up position while undergoing X-rays with the IMU capturing the data in parallel. Patients further completed another five repetitions of the movements with the IMU but without the x-ray to test repeatability of the measurements. Statistical analysis included measures of correlation between the X-ray and IMU measurements. Results. Data on 30 patients indicated a moderate-strong correlation (R. 2. =0.87) between IMU and radiological measures of pelvic tilt. Key message. A novel device has been developed that can suitably track pelvic movements to stratify patients into risk categories for post-operative dislocations


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 45 - 45
1 Jun 2017
Konan S Eyal G Witt J
Full Access

Clinical graphics allows creation of three dimensional simulation based on CT or MRI that allows pre-operative planning. The software reports several hip morphological parameters routinely. Our aim was to validate the measurements of acetabular morphological parameters using CT based clinical graphics in patients presenting with symptomatic hip pain.

We reviewed standardised plain radiographs, CT scans and 3D clinical graphics outputs of 42 consecutive hips in 40 patients presenting with symptomatic hip pain. Acetabular index (AI), lateral centre edge angle (LCE), acetabular and femoral version measurements were analysed for the 3D clinical graphics with radiographs and CT as gold standard.

Significant differences were noted in measurements of AI, LCE, acetabular version and femoral version using the 3D motion analysis versus conventional measures, with only acetabular version showing comparable measurements. Correlation between 3D clinical graphics and conventional measures of acetabular morphology (AI, LCE) showed only slight agreement (ICC <0.4); while substantial agreement was noted for acetabular and femoral version (IC > 0.5).

Acetabular morphological parameters measured by 3D clinical graphics are not reliable or validated. While clinicians may pursue the use of 3D clinical graphics for preoperative non-invasive planning, caution should be exercised when interpreting the reports of hip morphological parameters such as AI and LCE.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 126 - 126
1 Mar 2017
Zumbrunn T Duffy M Rubash H Malchau H Muratoglu O Varadarajan KM
Full Access

One of the key factors responsible for altered kinematics and joint stability following contemporary total knee arthroplasty (TKA) is resection of the anterior cruciate ligament (ACL). Therefore, retaining the ACL is often considered to be the “holy grail” of TKA. However, ACL retention can present several technical challenges, and in some cases may not be viable due to an absent or non-functional ACL. Therefore, the goal of this research was to investigate whether substitution of ACL function through an anterior post mechanism could improve kinematic deficits of contemporary posterior cruciate ligament (PCL) retaining (CR) implants. This was done using KneeSIM, a previously established dynamic simulation tool based on an Oxford-rig setup. Deep knee bend, chair-sit, stair-ascent and walking were simulated for a contemporary ACL sacrificing (CR) implant, two ACL retaining implants, and an ACL substituting and PCL retaining implant. The motion of the femoral condyles relative to the tibia was recorded for kinematic comparisons. Our results revealed that, like ACL retaining implants, the ACL substituting implant could also provide kinematic improvements over contemporary ACL sacrificing implants by reducing early posterior femoral shift and preventing paradoxical anterior sliding. Such ACL substituting implants may be a valuable addition to the armament of joint surgeons, allowing them to provide improved knee function even when ACL retention is not feasible. Further research is required to investigate this mechanism in vitro and in vivo to verify the results of the simulations, and to determine whether kinematic improvements translate into improved clinical outcomes


Bone & Joint Research
Vol. 6, Issue 1 | Pages 31 - 42
1 Jan 2017
Kang K Koh Y Jung M Nam J Son J Lee Y Kim S Kim S

Objectives

The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions.

Methods

A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 15 - 15
1 May 2016
Varadarajan K Zumbrunn T Duffy M Patel R Freiberg A Malchau H Rubash H Muratoglu O
Full Access

Introduction. Dual Mobility (DM) implants have gained popularity for the treatment and prevention of hip dislocation, with increased stability provided by a large diameter mobile liner. However, distal regions of the liner can impinge on soft-tissues like hip capsule and iliopsoas, leading to anterior hip pain. Additionally, soft-tissue impingement may trap the mobile liner, leading to excessive loading of the liner rim, from engagement with the femoral stem, and subsequent intra-prosthetic dislocation. The hypothesis of this study was that reducing the liner profile below the equator (contoured design) can mitigate soft-tissue impingement without compromising inner-head pull-out resistance and overall hip joint stability (Fig. 1). Methods. The interaction of conventional and contoured liners with anterior soft-tissues was evaluated in 10 cadaveric hips (5 specimens; 2 male, 3 female; age 65 ± 10 yrs; liner diameter 42–48mm) via visual observation and fluoroscopic imaging. A metal wire was sutured to the deep fibers of the iliopsoas tendon/muscle, and metal wires were embedded in the mobile liners for fluoroscopic visualization (Fig. 2). All soft-tissue except the anterior hip capsule and iliopsoas was removed, and a rope was attached to the iliopsoas to apply tension along its natural orientation. Resistance to inner-head pull-out was evaluated via Finite Element Analysis (FEA) by simulating a full cycle of insertion of the inner head into the mobile liner and subsequent pullout. The femoral head, acetabular shell, and stem were modeled as rigid, while the mobile liner was modeled as plastically deformable. Hip joint stability was evaluated by dynamic simulations in for two dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal hip rotation; (B) Posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction. A 44 mm diameter conventional and a 44 mm contoured liner were evaluated during these tests. Results. The cadaver experiments showed that distal portion of conventional liners impinge on anterior hip capsule and iliopsoas at low flexion angles (<30°). Additionally, when the hip moved from flexion into extension, the liner motion was blocked between posterior neck engagement, and anterior soft-tissue impingement. In all hips, the soft-tissue impingement / tenting was significantly reduced with contoured liners (Fig. 7). The change in tenting could be visualized as change in distance between the iliopsoas wire, and the contoured/conventional liners on sequential fluoroscopic images. The maximum reduction in iliopsoas tenting for a given specimen ranged from 1.8 mm to 5.5 mm. Additionally, the contoured and conventional liners had identical inner-head pull-out resistance (901N vs. 909N), jump distance (9.4 mm mode-A, 11.7 mm mode-B) and impingement-free range of motion (47° mode-A, 29° mode-B). Conclusion. This study showed that distal portions of conventional DM liners can impinge against iliopsoas and hip capsule in low flexion leading to functional impediment of liner motion. Additionally, reducing the liner profile below the equator led to significant reduction in soft-tissue impingement/tenting without affecting mechanical performance. Thus, a contoured dual mobility liner design may reduce the risk of anterior hip pain and intra-prosthetic dislocation resulting from soft-tissue impingement and liner entrapment. To view tables/figures, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 109 - 109
1 May 2016
Deck J White B
Full Access

Modeling the kinetic effects of the soft tissue structures is a major challenge for dynamic simulation of knees and other joints. We describe a technique whereby a multi-fiber ligament model is evolved to reproduce accurately the passive kinetics of a knee joint. The passive motion can be derived from patient-specific motion capture data. It may also be derived in-silico from a desired articular surface geometry, for example an implant or a surface model acquired by radiography. The technique operates by optimizing the tibial ligament insertion sites to minimize the change in strain energy through a specified range of motion. It is believed that the ligament model so produced is valuable for loaded kinetic and kinematic joint studies as well. The results therefore may be used to inform implant positioning during surgical planning


The Bone & Joint Journal
Vol. 96-B, Issue 2 | Pages 237 - 241
1 Feb 2014
Miyake J Shimada K Oka K Tanaka H Sugamoto K Yoshikawa H Murase T

We retrospectively assessed the value of identifying impinging osteophytes using dynamic computer simulation of CT scans of the elbow in assisting their arthroscopic removal in patients with osteoarthritis of the elbow. A total of 20 patients were treated (19 men and one woman, mean age 38 years (19 to 55)) and followed for a mean of 25 months (24 to 29). We located the impinging osteophytes dynamically using computerised three-dimensional models of the elbow based on CT data in three positions of flexion of the elbow. These were then removed arthroscopically and a capsular release was performed. The mean loss of extension improved from 23° (10° to 45°) pre-operatively to 9° (0° to 25°) post-operatively, and the mean flexion improved from 121° (80° to 140°) pre-operatively to 130° (110° to 145°) post-operatively. The mean Mayo Elbow Performance Score improved from 62 (30 to 85) to 95 (70 to 100) post-operatively. All patients had pain in the elbow pre-operatively which disappeared or decreased post-operatively. According to their Mayo scores, 14 patients had an excellent clinical outcome and six a good outcome; 15 were very satisfied and five were satisfied with their post-operative outcome. We recommend this technique in the surgical management of patients with osteoarthritis of the elbow. Cite this article: Bone Joint J 2014;96-B:237–41


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 604 - 604
1 Dec 2013
Zumbrunn T Varadarajan KM Rubash HE Li G Muratoglu O
Full Access

INTRODUCTION. Contemporary PCL sacrificing Total Knee Arthroplasty (TKA) implants (CS) consist of symmetric medial and lateral tibial articular surfaces with high anterior lips designed to substitute for the stability of the native PCL. However, designs vary significantly across implant systems in the level of anteroposterior constraint provided. Therefore, the goal of this study was to investigate kinematics of two CS designs with substantially different constraint levels. The hypothesis was that dynamic knee simulations could show the effect of implant constraint on kinematics of CS implants. METHODS. LifeModeler KneeSIM software was used to analyze contemporary CS TKA (X) with a symmetric and highly dished tibia and contemporary CS TKA (Y) with a symmetric tibia having flat sections bounded by high anterior and posterior lips, during simulated deep knee bend and chair sit. The flat sections of CS-Y implant are designed to allow freedom prior to motion restriction by the implant lips. Components were mounted on an average knee model created from Magnetic Resonance Imaging (MRI) data of 40 normal knees. Relevant ligament/tendon insertions were obtained from the MRI based 3D models and tissue properties were based on literature values. The condyle center motions relative to the tibia were used to compare the different implant designs. In vivo knee kinematics of healthy subjects from published literature was used for reference. RESULTS. Prior publications on in vivo kinematics of healthy knees showed that normal knee motion is characterized by an overall medial pivot. This includes greater, consistent posterior rollback of the lateral condyle than medial (Fig 3). In contrast, CS implant X showed symmetric motion including paradoxical anterior sliding until 120° flexion. This caused a more anterior location for both femoral condyles in flexion as opposed to the posterior location seen in healthy knees. CS implant Y with flat sections showed even greater anterior sliding than CS-X. These trends were seen for chair sit activity as well. Thus, while CS-X showed less paradoxical sliding, both implants suffered from kinematic deficits due to absence of the PCL (Fig. 1 and Fig. 2). CONCLUSION. The two CS implants showed different kinematic performance confirming the hypothesis that implant design affects kinematics of CS TKA. Absence of the PCL in contemporary CS implants resulted in kinematic deficits. In particular, a symmetric implant with flat sections connecting the anteroposterior implant lips showed excessive paradoxical anterior sliding. These data showed both the need and opportunity for novel designs to address the limitations of contemporary CS implants