Abstract
Modeling the kinetic effects of the soft tissue structures is a major challenge for dynamic simulation of knees and other joints. We describe a technique whereby a multi-fiber ligament model is evolved to reproduce accurately the passive kinetics of a knee joint. The passive motion can be derived from patient-specific motion capture data. It may also be derived in-silico from a desired articular surface geometry, for example an implant or a surface model acquired by radiography. The technique operates by optimizing the tibial ligament insertion sites to minimize the change in strain energy through a specified range of motion. It is believed that the ligament model so produced is valuable for loaded kinetic and kinematic joint studies as well. The results therefore may be used to inform implant positioning during surgical planning.