Advertisement for orthosearch.org.uk
Results 1 - 20 of 2957
Results per page:
Bone & Joint Research
Vol. 13, Issue 11 | Pages 659 - 672
20 Nov 2024
Mo H Sun K Hou Y Ruan Z He Z Liu H Li L Wang Z Guo F

Aims. Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. Methods. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry. Results. We found that PA28γ knockdown in chondrocytes can effectively improve anabolism and catabolism and inhibit inflammation, apoptosis, and ER stress. Moreover, PA28γ knockdown affected the phosphorylation of IRE1α and the expression of TRAF2, thereby affecting the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways, and finally affecting the inflammatory response of chondrocytes. In addition, we found that PA28γ knockdown can promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inhibiting ER stress in chondrocytes. The use of Stattic (an inhibitor of STAT3 phosphorylation) enhanced ER stress. In vivo, we found that PA28γ knockdown effectively reduced cartilage destruction in a mouse model of OA induced by the DMM surgery. Conclusion. PA28γ knockdown in chondrocytes can inhibit anabolic and catabolic dysregulation, inflammatory response, and apoptosis in OA. Moreover, PA28γ knockdown in chondrocytes can inhibit ER stress by promoting STAT3 phosphorylation. Cite this article: Bone Joint Res 2024;13(11):659–672


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 16 - 16
14 Nov 2024
Mei J Pasoldt A Matalova E Graessel S
Full Access

Introduction. Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration, inflammation, and pain. Current treatments provide only symptomatic relief, necessitating novel molecular targets. The caspase family, known for its roles in apoptosis and inflammation regulation, may additionally influence crucial processes for cartilage homeostasis such as differentiation and proliferation. However, the specific roles of individual caspases in OA pathogenesis remain unclear. This study aims to investigate the involvement of the caspase family in OA and as potential targets for therapy, with a focus on caspase-1 and -8. Method. Chondrocytes from both healthy and OA donors were cultured in 2D and 3D culture models and stimulated with TNF-α or IL-1β. The expression and activation of caspase-1 and -8 was assessed using RT-PCR, ELISA. Transcriptome analysis of OA and healthy cartilage samples, along with Mendelian randomization (MR) analysis were conducted to explore the involvement of caspase family in OA and to assess its potential as therapeutic targets. Result. Higher expression levels of caspase-1, -8 were observed in OA cartilage compared to healthy cartilage. TNF-α stimulation increased their expression in both healthy and OA chondrocytes, while IL-1β had limited impact. Caspase-8 expression was causally associated with knee OA in MR analysis, suggesting a potential therapeutic target. The caspase-1 inhibitor VX-765 mildly reduced chondrocyte viability, with no significant effect in the presence of TNF-α. While the caspase-8 inhibitor Z-IETD-FMK exhibited slight enhancements in cell viability, these improvements were not statistically significant. Nevertheless, its effectiveness significantly increased in the presence of TNF-α. Conclusion. This study highlights the involvement of caspase-1 and caspase-8 in OA pathology, with caspase-8 emerging as a potential therapeutic target for knee OA treatment. Further investigation into the roles of caspase-1 and -8 in OA pathophysiology, including the efficacy and potential side effects of their corresponding inhibitors, is warranted. Acknowledgements. Funding Inter-Action/Inter-Excellence project (BTHA-JC-2022-36/LUABA22019)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 54 - 54
14 Nov 2024
Pann P Taheri S Schilling AF Graessel S
Full Access

Introduction. Osteoarthritis (OA) causes pain, stiffness, and loss of function due to degenerative changes in joint cartilage and bone. In some forms of OA, exercise can alleviate symptoms by improving joint mobility and stability. However, excessive training after joint injury may have negative consequences for OA development. Sensory nerve fibers in joints release neuropeptides like alpha-calcitonin gene-related peptide (alpha-CGRP), potentially affecting OA progression. This study investigates the role of alpha-CGRP in OA pathogenesis under different exercise regimen in mice. Method. OA was induced in C57Bl/6J WT mice and alpha-CGRP KO mice via surgical destabilization of the medial meniscus (DMM) at 12 weeks of age (N=6). Treadmill exercise began 2 weeks post-surgery and was performed for 30 minutes, 5 days a week, for 2 or 6 weeks at intense (16 m/min, 15° incline) or moderate (10 m/min, 5° incline) levels. Histomorphometric assessment of cartilage degradation (OARSI scoring), serum cytokine analysis, immunohistochemistry, and nanoCT analysis were conducted. Result. OARSI scoring confirmed OA induction 4 weeks post-DMM surgery, with forced exercise exacerbating cartilage degradation regardless of intensity. No significant genotype-dependent differences were observed. Serum analysis revealed elevated cytokine levels associated with OA and inflammation in KO mice compared to WT mice 4 and 8 weeks post-surgery (VEGF-A, MCP-1, CXCL10, RANTES, MIP1-alpha, MIP1-beta, and RANKL). The observed effects were often exacerbated by intense exercise but rarely by DMM surgery. NanoCT analysis demonstrated increased sclerotic bone changes after 6 weeks of forced exercise in KO mice compared to WT mice. Conclusion. Our results suggest an OA promoting effect of exercise in early disease stages of posttraumatic OA. Intense exercise induced inflammatory processes correlated to increased cytokine levels in the serum that might exacerbate OA pathogenesis in later stages. The neuropeptide alpha-CGRP might play a role in protecting against these adverse effects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 113 - 113
14 Nov 2024
Giger N Schröder M Arens D Gens L Zeiter S Stoddart M Wehrle E
Full Access

Background. The molecular mechanisms underlying non-union bone fractures largely remain elusive. Recently, spatial transcriptomics approaches for musculoskeletal tissue samples have been developed requiring direct placement of histology sections on barcoded slides. However, Formalin-Fixed-Paraffin-Embedded (FFPE) bone sections have been associated with limited RNA quality and read depth compared to soft tissue. Here, we test spatial transcriptomics workflows based on transcriptomic probe transfer to characterize molecular features discriminating non-union and union bone fractures in mice. Method. Histological sections (n=8) used for spatial transcriptomics (Visium CytAssist FFPE; 10x Genomics, n=4 on glass slides, n=4 on hydrogel-coated slides) were obtained from a fracture healing study in female 20-week-old C57BL/6J mice receiving either a femur osteotomy (0.7mm) or a segmental defect (2.4mm) (license 22/2022, Grisons CH). Sequence alignment and manual segmentation of different tissues (bone, defect region/callus, bone marrow, muscle) were performed using SpaceRanger and LoupeBrowser (10x Genomics). Differential gene expression was performed using DESeq2 (Seurat) followed by Gene-Set-Enrichment-Analysis (GSEA) of Gene Ontology (ClusterProfiler). Group comparison of quality measures was done using a Welch's t-test. Results are given as mean±standard deviation. Result. The quality measures, mean counts, and genes per spot, were significantly ~10× higher for sections on hydrogel slides (counts: 4700±1796, genes: 2389±1170) compared to glass slides (counts: 463±415, genes: 250±223). In challenging tissues like cortical bone, we reached high counts+genes in comparison to published data. Direct comparison of a non-union and union section showed a total of 432 differentially regulated genes, 538 in the defect region/callus. GSEA revealed differential regulation of pathways involved in muscle organ morphogenesis, cartilage development and endochondral ossification. Conclusions. Optimized spatial transcriptomics workflows based on transcriptomic probe transfer enable for improved read depth in musculoskeletal tissue enabling the characterization of molecular features discriminating non-union and union bone fractures. Acknowledgements. AO Foundation (AOTRAUMA), SNSF (PhD salary)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 72 - 72
14 Nov 2024
Uvebrant K Andersen C Lim HC Vonk L Åkerlund EL
Full Access

Introduction. Homogenous and consistent preparations of mesenchymal stem cells (MSCs) can be acquired by selecting them for integrin α10β1 (integrin a10-MSCs). Safety and efficacy of intra-articular injection of allogeneic integrin a10-MSCs were shown in two post-traumatic osteoarthritis horse studies. The current study investigated immunomodulatory capacities of human integrin a10-MSCs in vitro and their cell fait after intra-articular injection in rabbits. Method. The concentration of produced immunomodulatory factors was measured after licensing integrin a10-MSCs with pro-inflammatory cytokines. Suppression of T-cell proliferation was determined in co-cultures with carboxyfluorescein N-succinimidyl ester (CFSE) labelled human peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3/CD28 and measuring the CFSE intensity of CD4+ cells. Macrophage polarization was assessed in co-cultures with differentiated THP-1 cells stimulated with lipopolysaccharide and analysing the M2 macrophage cell surface markers CD163 and CD206. In vivo homing and regeneration were investigated by injecting superparamagnetic iron oxide nanoparticles conjugated with Rhodamine B-labeled human integrin a10-MSCs in rabbits with experimental osteochondral defects. MSC distribution in the joint was followed by MRI and fluorescence microscopy. Result. The production of the immunomodulatory factors indoleamine 2,3-dioxygenase and prostaglandin E2 was increased after inflammatory licensing integrin a10-MSCs. Co-cultures with integrin a10-MSCs suppressed T-cell proliferation and increased the frequency of M2 macrophages. In vivo injected integrin a10-MSCs homed to osteochondral defects and were detected in the repair tissue of the defects up to 10 days after injection, colocalized with aggrecan and type II collagen. Conclusion. This study showed that human integrin a10-MSCs have immunomodulatory capacities and in vivo can home to the site of osteochondral damage and directly participate in cartilage regeneration. This suggests that human integrin α10β1-selected MSCs may be a promising therapy for osteoarthritis with dual mechanisms of action consisting of immunomodulation and homing to damage followed by early engraftment and differentiation into chondrocyte-like cells that deposit hyaline cartilage matrix molecules


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 69 - 69
14 Nov 2024
Sawant S Borotikar B Raghu V Audenaert E Khanduja V
Full Access

Introduction. Three-dimensional (3D) morphological understanding of the hip joint, specifically the joint space and surrounding anatomy, including the proximal femur and the pelvis bone, is crucial for a range of orthopedic diagnoses and surgical planning. While deep learning algorithms can provide higher accuracy for segmenting bony structures, delineating hip joint space formed by cartilage layers is often left for subjective manual evaluation. This study compared the performance of two state-of-the-art 3D deep learning architectures (3D UNET and 3D UNETR) for automated segmentation of proximal femur bone, pelvis bone, and hip joint space with single and multi-class label segmentation strategies. Method. A dataset of 56 3D CT images covering the hip joint was used for the study. Two bones and hip joint space were manually segmented for training and evaluation. Deep learning models were trained and evaluated for a single-class approach for each label (proximal femur, pelvis, and the joint space) separately, and for a multi-class approach to segment all three labels simultaneously. A consistent training configuration of hyperparameters was used across all models by implementing the AdamW optimizer and Dice Loss as the primary loss function. Dice score, Root Mean Squared Error, and Mean Absolute Error were utilized as evaluation metrics. Results. Both the models performed at excellent levels for single-label segmentations in bones (dice > 0.95), but single-label joint space performance remained considerably lower (dice < 0.87). Multi-class segmentations remained at lower performance (dice < 0.88) for both models. Combining bone and joint space labels may have introduced a class imbalance problem in multi-class models, leading to lower performance. Conclusion. It is not clear if 3D UNETR provides better performance as the selection of hyperparameters was the same across the models and was not optimized. Further evaluations will be needed with baseline UNET and nnUNET modeling architectures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 33 - 33
14 Nov 2024
Fallahy M Shaker F Ghanbari F Aslani MA Mohammadi S Behrouzieh S
Full Access

Introduction. Knee Osteoarthritis (KOA) is a prevalent joint disease requiring accurate diagnosis and prompt management. The condition occurs due to cartilage deterioration and bone remodeling. Ultrasonography has emerged as a promising modality for diagnosing KOA. Medial meniscus extrusion (MME), characterized by displacement of medial meniscus beyond the joint line has been recognized as a significant marker of KOA progression. This study aimed to explore potentials Ultrasound findings in timely detection of MME and compare it to magnetic resonance imaging (MRI) as a reference standard. Method. A comprehensive literature search was performed in 4 databases from inception to May 1 2024. Two independent reviewers, initiated screening protocols and selected the articles based on inclusion and exclusion criteria and then extracted the data. Meta-analysis was conducted using R 4.3.2 packages mada and metafor. Result. A total of 2500 articles from 4 databases was retrieved; however, following the application of inclusion and exclusion criteria 23 articles were finally extracted. These studies collectively encompassed a total of 777 patients with mean age of 53.2±7.4. The mean BMI calculated for patients was 28.31 ± 2.45. All patients underwent non-weight bearing knee ultrasonography in supine position with 0° flexion. The reported medial meniscus extrusion was 2.58 mm for articles using MRI and 2.65 mm for those using Ultrasound (MD: 0.05 ± 0.12, P= 0.65, I. 2. : 54%). Our meta-analysis revealed insignificant difference between US and MRI. (SMD: 0.03, 95% CI: -0.18 _0.23, P= 0.77, I. 2. : 56%) Meta analysis for diagnostic accuracy measures yielded a pooled sensitivity and specificity of 90.8% and 77% (95% CI: 84.2% – 94.8%, 35.5% – 95.3%, respectively, I. 2. : 44%). Conclusion. Our results indicate a close alignment in the accuracy of measurements obtained using Ultrasound modality. The narrow range suggests a minimal discrepancy in MME values between MRI and ultrasound, highlighting their comparable precision in diagnostic assessments


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 104 - 104
14 Nov 2024
Amirouche F Kim S Mzeihem M Nyaaba W Mungalpara N Mejia A Gonzalez M
Full Access

Introduction

The human wrist is a highly complex joint, offering extensive motion across various planes. This study investigates scapholunate ligament (SLL) injuries’ impact on wrist stability and arthritis risks using cadaveric experiments and the finite element (FE) method. It aims to validate experimental findings with FE analysis results.

Method

The study utilized eight wrist specimens on a custom rig to investigate Scapho-Lunate dissociation. Contact pressure and flexion were measured using sensors. A CT-based 3D geometry reconstruction approach was used to create the geometries needed for the FE analysis. The study used the Friedman test with pairwise comparisons to assess if differences between testing conditions were statistically significant.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 19 - 19
14 Nov 2024
Danalache M Umrath F Riester R Schwitalle M Guilak F Hofmann UK
Full Access

Introduction. Chondrocytes are enveloped within the pericellular matrix (PCM), a structurally intricate network primarily demarcated by the presence of collagen type VI microfibrils and perlecan, resembling a protective cocoon. The PCM serves pivotal functions in facilitating cell mechanoprotection and mechanotransduction. The progression of osteoarthritis (OA) is associated with alterations in the spatial arrangement of chondrocytes, transitioning from single strings to double strings, small clusters, and eventually coalescing into large clusters in advanced OA stages. Changes in cellular patters coincide with structural degradation of the PCM and loss of biomechanical properties. Here, we systematically studied matrix metalloproteinases (MMPs), their distribution, activity, and involvement in PCM destruction, utilizing chondrocyte arrangement as an OA biomarker. Methods. Cartilage specimens were obtained from 149 osteoarthritis (OA) patients, and selected based on the predominant spatial pattern of chondrocytes. Immunoassays were employed to screen for the presence of various MMPs (-1, -2, -3, -7, -8, -9, -10, -12, -13). Subsequently, the presence and activity of elevated MMPs were further investigated through immunolabeling, western blots and zymograms. Enzymatic assays were utilized to demonstrate the direct involvement of the targeted MMPs in the PCM destruction. Results. Screening revealed increased levels of MMP-1, -2, -3, -7, and -13, with their expression profile demonstrating a distinct dependency on the stage of degeneration. We found that MMP-2 and -3 can directly compromise the integrity of collagen type VI, whereas MMP-3 and MMP-7 disrupt perlecan. Conclusions. Presence of both pro- and active forms of MMP-2, -3, and -7 in OA-induced patterns, along with their direct involvement in collagen type VI and perlecan degradation, underscores their crucial role in early PCM destruction. Given the early stages of the disease already exhibit heightened MMP expression, this understanding could inform early targeted therapies aimed at arresting abnormal PCM remodelling. Acknowledgments. Faculty of Medicine of the University of Tübingen (grant: 2650-0-0)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 21 - 21
14 Nov 2024
Nieuwstraten J Guilak F Danalache M
Full Access

Introduction. Within articular cartilage, chondrocytes reside within the pericellular matrix (PCM), collectively constituting the microanatomical entity known as a chondron. The PCM functions as a pivotal protective shield and mediator of biomechanical and biochemical cues. In the context of Osteoarthritis (OA), enzymatic degradation of the PCM is facilitated by matrix metalloproteinases (MMPs). This study delves into the functional implications of PCM structural integrity decline on the biomechanical properties of chondrons and impact on Ca. 2+. signaling dynamics. Method. Chondrons isolated from human cartilage explants were incubated with activated MMP-2, -3, or -7. Structural degradation of the pericellular matrix (PCM) was assessed by immunolabelling (collagen type VI and perlecan, n=5). Biomechanical properties of chondrons (i.e. elastic modulus (EM)) were analyzed using atomic force microscopy (AFM). A fluorescent calcium indicator (Fluo-4-AM) was used to record and quantify the intracellular Ca. 2+. influx of chondrons subjected to single cell mechanical loading (500nN) with AFM (n=7). Result. Each of the three MMPs disrupted the structural integrity of the PCM, leading to attenuated fluorescence intensity for both perlecan and collagen VI. A significant decrease of EM was observed for all MMP groups (p<0.005) with the most notable decrease observed for MMP-2 and MMP-7 (p<0.001). In alignment with the AFM results, there was a significant alteration in Ca. 2+. influx observed for all MMP groups (p<0.05), in particular for MMP-2 and MMP-7 (p<0.001). Conclusion. Proteolysis of the PCM by MMP-2, -3, and -7 not only significantly alters the biomechanical properties of articular chondrons but also affects their mechanotransduction profile and response to mechanical loading, indicating a close interconnection between these processes. These findings underscore the influence of an intact pericellular matrix (PCM) in protecting cells from high stress profiles and carry implications for the transmission of mechanical signaling during OA onset and progression


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 9 - 9
14 Nov 2024
Enderami E Timmen M Stange R
Full Access

Introduction. Cartilage comprises chondrocytes and extracellular matrix. The matrix contains different collagens, proteoglycans, and growth factors produced by chondroprogenitor cells that differentiate from proliferating to hypertrophic chondrocytes. In vitro chondrocyte growth is challenging due to differences in behaviour between 2D and 3D cultures. Our aim is to establish a murine 3D spheroid culture method using chondrocytes to study the complex interaction of cells on the chondro-osseous border during enchondral ossification. Method. Primary chondrocytes were isolated from the knee of WT new-born mice and used to form 10,000 cell number spheroids. We used the ATDC5-chondrocyte cell line as an alternative cell type. Spheroids were observed for 7, 14, and 21 days before embedding in paraffin for slicing. Alcian blue staining was performed to identify proteoglycan positive areas to prove the formation of extracellular matrix in spheroids. Collagen type 2, and Collagen type X expression were analyzed via quantitative real-time PCR and immunohistochemistry. Result. Alcian blue staining showed increasing matrix formation from day 7 to day 14 and proliferative chondrocytes at early time points. Both cell types showed increasing mRNA expression of Collagen type 2 from day 7 to day 21. Collagen type X positive staining starting from day 14 on confirmed the development of hypertrophic stage of chondrocytes. ATDC5 cells exhibited a slower progression in chondrogenic differentiation compared to primary chondrocytes. Conclusion. In chondrocyte spheroids, we observed proceeding differentiation of chondrocytes reaching hypertrophic phase. Primary chondrocytes showed faster development than ATDC5 cell line. Overall, spheroid culture of chondrocytes could be a good basis to study the interaction of different cells types of the chondro-osseous border by combination of chondrocytes with e.g., endothelial cells and osteoblasts within the spheroid. Those organoid cultures might also help to reduce animal experiments in the future, by mimicking complex regeneration procedures like bone growth or fracture healing. DFG(German Research Foundation)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 126 - 126
14 Nov 2024
Lu C Lian W Wu R Lin Y Su C Chen C Tai M Chen Y Wang S Wang F
Full Access

Introduction. Cartilage damage is a critical aspect of osteoarthritis progression, but effective imaging strategies remain limited. Consequently, multimodal imaging approaches are receiving increased attention. Gold nanomaterials, renowned for their therapeutic and imaging capabilities, hold promise in drug development. However, their potential for cartilage imaging is rarely discussed. Here, we developed a versatile nanomaterial, AuNC@BSA-Gd-I, for cartilage detection. By leveraging electrostatic interactions with sulfated glycosaminoglycans (sGAG), the AuNC@BSA-Gd-I can effectively penetrate damaged cartilage while accumulating minimally in healthy cartilage. This probe can be visualized or detected using CT, MRI, IVIS, and a gamma counter, providing a comprehensive approach to cartilage imaging. Additionally, we compared the imaging abilities, cartilage visualization capacities, and versatility of currently disclosed multimodal gold nanomaterials with those of AuNC@BSA-Gd-I. Method. The physicochemical properties of nanomaterials were measured. The potential for cartilage visualization of these nanomaterials was assessed using an in vitro porcine model. The sGAG content in cartilage was determined using the dimethylmethylene blue (DMMB) assay to establish the correlation between sGAG concentration and imaging intensity acquired at each modality. Results. The cartilage imaging abilities of AuNC@BSA-Gd-I for CT, MRI, and optical imaging were verified, with each imaging intensity demonstrating a strong correlation with the sGAG content (MRI; R2=0.93, CT; R2=0.83, IVIS; R2=0.79). Furthermore, AuNC@BSA-Gd-. 131. I effectively accumulated in defective cartilage tissue compared to healthy cartilage (23755.38 ± 5993.61 CPM/mg vs. 11699.97 ± 794.93 CPM/mg). Additionally, current gold nanomaterials excelled in individual imaging modalities but lacked effective multimodal imaging ability. Conclusion. Compared to current multimodal gold nanomaterials, AuNC@BSA-Gd-I demonstrates the potential to image cartilage across multiple medical instruments, providing investigators with a more powerful, visible, and convenient approach to detect cartilage defects. Acknowledgements. This work was financially supported by the National Health Research Institute, Taiwan (NHRI-EX112-11029SI), the National Science and Technology Council (NSTC 112-2314-B-182A-105-MY3), and Chang Gung Memorial Hospital, Taiwan (CMRPG8N0781 and CMRPG8M1281-3)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 123 - 123
14 Nov 2024
D’Arrigo D Conte P Anzillotti G Giancamillo AD Girolamo LD Peretti G Crovace A Kon E
Full Access

Introduction. Degenerative meniscal tears are the most common meniscal lesions, representing huge clinical and socio-economic burdens. Their role in knee osteoarthritis (OA) onset and progression is well established and demonstrated by several retrospective studies. Effective preventive measures and non-surgical treatments for degenerative meniscal lesions are still lacking, also because of the lack of specific and accurate animal models in which test them. Thus, we aim to develop and validate an accurate animal model of meniscus degeneration. Method. Three different surgical techniques to induce medial meniscus degenerative changes in ovine model were performed and compared. A total of 32 sheep (stifle joints) were subjected to either one of the following surgical procedures: a) direct arthroscopic mechanical meniscal injury; b) peripheral devascularization and denervation of medial meniscus; c) full thickness medial femoral condyle cartilage lesion. In all the 3 groups, the contralateral joint served as a control. Result. From a visual examination of the knee joint emerged a clear difference between control and operated groups, in the menisci but also in the cartilage, indicating the onset of OA-related cartilage degeneration. The meniscal and cartilaginous lesions were characterized by different severity and location in the different groups. For instance, a direct meniscal injury caused cartilaginous lesions especially in the medial part of the condyles, and the other approaches presented specific signature. Evaluation of scoring scales (e.g. ICRS score) allowed the quantification of the damage and the identification of differences among the four groups. Conclusion. We were effectively able to develop and validate a sheep model of meniscal degeneration which led to the onset of OA. This innovative model will allow to test in a pre-clinical relevant setting innovative approaches to prevent meniscal-related OA. Funding. Project PNRR-MAD-2022-12375978 funded by Italian Ministry of Health


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 97 - 97
14 Nov 2024
Ji E Leijsten L Bouma JW Rouchon A Maggio ND Banfi A Osch GV Farrell E lolli A
Full Access

Introduction. Endochondral ossification (EO) is the process of bone development via a cartilage template. It involves multiple stages, including chondrogenesis, mineralisation and angiogenesis. Importantly, how cartilage mineralisation affects angiogenesis during EO is not fully understood. Here we aimed to develop a new in vitro co-culture model to recapitulate and study the interaction between mineralised cartilage generated from human mesenchymal stromal cells (hMSCs) and microvascular networks. Method. Chondrogenic hMSC pellets were generated by culture with transforming growth factor (TGF)-β3. For mineralised pellets, β-glycerophosphate (BGP) was added from day 7 and TGF-β3 was withdrawn on day 14. Conditioned medium (CM) from the pellets was used to evaluate the effect on human umbilical vein endothelial cells (HUVECs) in migration, proliferation and tube formation assays. To perform direct co-cultures, pellets were embedded in fibrin hydrogels containing vessel-forming cells (HUVECs, adipose stromal cells) for 10 days with BGP to induce mineralisation. The pellets and hydrogels were characterised by immunohistochemistry and confocal imaging. Result. The CM from d14 chondrogenic or mineralised pellets significantly stimulated HUVEC migration and proliferation, as well as in vitro vascular network formation. When CM from pellets subjected to prolonged mineralisation (d28) was used, these effects were strongly reduced. When chondrogenic and mineralised pellets were directly co-cultured with vessel-forming cells in fibrin hydrogels, the cartilage matrix (collagen type II/X stainings) and the mineral deposition (von Kossa staining) were well preserved. Confocal imaging analyses demonstrated the formation of microvascular networks with well-formed lumina. Importantly, more microvascular structures were formed in the proximity of chondrogenic pellets than mineralized pellets. Conclusion. The angiogenic properties of tissue engineered cartilage are significantly reduced upon prolonged mineralisation. We developed a 3D co-culture model to study the role of angiogenesis in endochondral bone formation, which can have applications in disease modelling studies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 14 - 14
14 Nov 2024
Gögele CL Fleischmann N Müller S Liesenberg T Pizzadili G Wiltzsch S Gerdes T Schaefer-Eckart K Lenhart A Schulze-Tanzil G
Full Access

Introduction. Articular cartilage has a low self-regeneration capacity. Cartilage defects have to be treated to minimize the risk of the onset of osteoarthritis. Bioactive glass (BG) is a promising source for cartilage tissue engineering. Until now, conventional BGs (like BG1393) have been used, mostly for bone regeneration, as they are able to form a hydroxyapatite layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to study the effect of 3D printed hydrogel scaffolds supplemented with spheres of the BG CAR12N to improve the chondrogenesis of mesenchymal stem cells (MSCs). Method. Based on our new glass composition (CAR12N), small BG spheres (25-40 µm) were produced and mixed with hydrogel and primary human (h) MSCs. Grid printed scaffolds were cultivated up to 21 days in expansion or chondrogenic differentiation medium. Macroscopical images of the scaffolds were taken to observe surface changes. Vitality, DNA and sulfated glycosaminoglycan (GAG) content was semiquantitatively measured as well as extracellular matrix gene transcription. Result. It was possible to print grid shaped hydrogel scaffolds with BG spheres and hMSCs. No significant changes in scaffold shape, surface or pore size were detected after 21 days in culture. The BG spheres were homogeneously distributed inside the grids. Vitality was significantly higher in grids with CAR12N spheres in comparison to those without. The DNA content remained constant over three weeks, but was higher in the sphere containing scaffolds than in those without BG spheres. GAG content in the grids increased not only with additional cultivation time but especially in grids with BG spheres in chondrogenic medium. Aggrecan and type II collagen gene expression was significantly higher grids cultured in the chondrogenic differentiation medium. Conclusion. This developed 3D model, is very interesting to study the effect of BG on hMSCs and to understand the influence of leaking ions on chondrogenesis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 109 - 109
14 Nov 2024
Weiden GVD Egmond NV Karperien M Both S Mastbergen S Emans P Caron J Custers R
Full Access

Introduction. The ACTIVE(Advanced Cartilage Treatment with Injectable-hydrogel Validation of the Effect) study investigates safety and performance of a novel dextran-tyramine hydrogel implant for treatment of small cartilage defects in the knee (0.5-2.0cm2). The hydrogel is composed of a mixture of natural polymer conjugates that are mixed intra-operatively and which cross-link in situ through a mild enzymatic reaction, providing a cell-free scaffold for cartilage repair. Method. The ACTIVE study is split into a safety (n=10) and a performance cohort (n=36). The Knee Injury and Osteoarthritis Outcome Score (KOOS), pain (numeric rating scale, NRS), Short-Form Health Survey (SF-36) were compared at baseline and 3, 6, and 12 months after surgery. The primary performance hypothesis is an average change in the KOOS from baseline to 12 months (ΔKOOS) greater than a minimal clinically important change (MIC) of 10. No statistical tests were performed as these are preliminary data on a smaller portion of the total study. Result. All patients of the safety cohort (n=10, mean age±SD, 30±9 years) were treated with the hydrogel for a symptomatic (NRS≥4) cartilage defect on the femoral condyle or trochlear groove (mean size±SD, 1.2±0.4cm2). No signs of an adverse foreign tissue reaction or serious adverse events were recorded within the safety cohort. At final follow-up mean KOOS±SD was 66.9±23.5, mean NRS resting±SD was 1.3±1.9, NRS activity±SD was 3.8±2.9 and mean SF-36±SD was 72.0±10.9. ΔKOOS was 21. One patient sustained new knee trauma prior to final follow-up, affecting final scores considerably. When excluded, ΔKOOS was 24(n=9). Conclusion. These promising initial findings provide a solid basis for continuation and expansion of this unique cartilage treatment. The MIC of 10 was surpassed. Though, results should be interpreted cautiously as they are based solely on preliminary data of the first 10 patients. Acknowledgements. Study is sponsored by Hy2Care, producer of the CartRevive®(dextran-tyramine) Hydrogel implant


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 119 - 119
14 Nov 2024
Rösch G Rapp AE Tsai PL Kohler H Taheri S Schilling AF Zaucke F Slattery D Lanzl ZJ
Full Access

Introduction. Osteoarthritis (OA) is a chronic degenerative disease of the entire joint leading to joint stiffness and pain (PMID:33571663). Recent evidence suggests that the sympathetic nervous system (SNS) plays a role in the pathogenesis of OA (PMID:34864169). A typical cause for long-term hyperactivity of the SNS is chronic stress. To study the contribution of increased sympathetic activity, we analyzed the progression of OA in chronically stressed mice. Method. We induced OA in male C57BL/6J mice by destabilizing the medial meniscus (DMM)(PMID:17470400) and exposed half of these mice to chronic unpredictable mild stress (CUMS)(PMID:28808696). Control groups consisted of sham-operated mice with and without CUMS exposure. After 12 weeks, CUMS efficacy was determined by assessing changes in body weight gain and activity of mice, measuring splenic norepinephrine and serum corticosterone levels. OA progression was studied by histological analysis of cartilage degeneration and synovitis, and by μCT to evaluate changes in calcified cartilage and subchondral bone microarchitecture. A dynamic weight-bearing system was used to assess OA-related pain. Result. CUMS resulted in significantly decreased body weight gain and activity, as well as increased splenic norepinephrine and serum corticosterone concentrations compared to the respective controls. Surprisingly, already DMM alone resulted in elevated stress hormone levels. CUMS significantly exacerbated cartilage degeneration and synovial inflammation and increased OA pain in DMM mice. The underlying cellular and molecular mechanisms are currently being analyzed using FACS, single cell RNAseq, and spatial proteomics. Conclusion. Overall, chronic stress exacerbates OA severity and pain. Moreover, increased levels of stress hormones were observed in OA mice without CUMS induction, suggesting a complex bi-directional interaction between the SNS and OA. Targeting the autonomic nervous system, such as attenuating the SNS but also stimulating the activity of the parasympathetic nervous system, as a counterpart of the SNS, may therefore be promising for novel preventive or causal treatments of OA


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1013 - 1019
11 Nov 2024
Clark SC Pan X Saris DBF Taunton MJ Krych AJ Hevesi M

Aims

Distal femoral osteotomies (DFOs) are commonly used for the correction of valgus deformities and lateral compartment osteoarthritis. However, the impact of a DFO on subsequent total knee arthroplasty (TKA) function remains a subject of debate. Therefore, the purpose of this study was to determine the effect of a unilateral DFO on subsequent TKA function in patients with bilateral TKAs, using the contralateral knee as a self-matched control group.

Methods

The inclusion criteria consisted of patients who underwent simultaneous or staged bilateral TKA after prior unilateral DFO between 1972 and 2023. The type of osteotomy performed, osteotomy hardware fixation, implanted TKA components, and revision rates were recorded. Postoperative outcomes including the Forgotten Joint Score-12 (FJS-12), Tegner Activity Scale score, and subjective knee preference were also obtained at final follow-up.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1003 - 1012
8 Nov 2024
Gabr A Fontalis A Robinson J Hage W O'Leary S Spalding T Haddad FS

Aims

The aim of this study was to compare patient-reported outcomes (PROMs) following isolated anterior cruciate ligament reconstruction (ACLR), with those following ACLR and concomitant meniscal resection or repair.

Methods

We reviewed prospectively collected data from the UK National Ligament Registry for patients who underwent primary ACLR between January 2013 and December 2022. Patients were categorized into five groups: isolated ACLR, ACLR with medial meniscus (MM) repair, ACLR with MM resection, ACLR with lateral meniscus (LM) repair, and ACLR with LM resection. Linear regression analysis, with isolated ACLR as the reference, was performed after adjusting for confounders.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims

While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes.

Methods

This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected.