header advert
Results 1001 - 1100 of 4366
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 8 - 8
1 Nov 2021
Khojaly R Rowan FE Nagle M Shahab M Ahmed AS Dollard M Taylor C Cleary M Niocaill RM
Full Access

Introduction and Objective

Ankle fractures are common and affect young adults as well as the elderly. An unstable ankle fracture treatment typically involves surgical fixation, immobilisation, and modified weight-bearing for six weeks. Non-weight bearing (NWB) cast immobilisation periods were used to protect the soft tissue envelope and osteosynthesis. This can have implications on patient function and may reduce independence, mobility and return to work. Newer trends in earlier mobilisation compete with traditional NWB doctrine, and weak consensus exists as to the best postoperative strategy. The purpose of this trial is to investigate the safety and efficacy of immediate weight-bearing (IWB) and range of motion (ROM) exercise regimes following ORIF of unstable ankle fractures with a particular focus on functional outcomes and complication rates.

Materials and Methods

A pragmatic randomised controlled multicentre trial, comparing IWB in a walking boot and ROM within 24 hours versus non-weight-bearing (NWB) and immobilisation in a cast for six weeks, following ORIF of all types of unstable adult ankle fractures (lateral malleolar, bimalleolar, trimalleolar with or without syndesmotic injury). The exclusion criteria are skeletal immaturity and tibial plafond fractures. The primary outcome measure is the functional Olerud-Molander Ankle Score (OMAS). Secondary outcomes include wound infection (deep and superficial), displacement of osteosynthesis, the full arc of ankle motion (plantar flexion and dorsal flection), RAND-36 Item Short Form Survey (SF-36) scoring, time to return to work and postoperative hospital length of stay.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 10 - 10
1 Nov 2021
Jamieson S Tyson-Capper A Hyde P Kirby J
Full Access

Introduction and Objective

Total joint replacement (TJR) is indicated for patients with end-stage osteoarthritis (OA) where conservative treatment has failed. Approximately 1.3 million primary hip replacement surgeries have been recorded in the United Kingdom since 2003 and this number is set to rise due to an increase in obesity as well as an ageing population. Total hip replacement (THR) has a survival rate of 85% at 20 years; the most common reason for failure is aseptic loosening which often occurs secondary to osteolysis caused by immune-mediated inflammation responses to wear debris generated from the materials used in the THR implant. Therefore, by understanding the biological steps by which biomaterials cause immune-mediated reactions it should be possible to prevent them in the future thereby reducing the number of costly revision surgeries required.

Materials and Methods

The human osteoblast-like cell line (MG-63) was seeded at a density of 100,000 cell per well of a 6-well plate and treated with and increasing doses (0.5, 5, and 50mm3 per cell) of cobalt-chromium (CoCr) particles generated on a six-station pin-on-plate wear generator or commercially available ceramic oxide nanopowders (Al2O3 and ZrO2) for 24 hours. TNF-alpha was used as a positive control and untreated cells as a negative control. Cells were then analysed by transmission electron microscopy (TEM) to determine whether the osteoblasts were capable of phagocytosing these biomaterials. MG-63 cells were used in conjunction with trypan blue and the XTT Cell Proliferation II Kit to assess cytotoxicity of the biomaterials investigated. Cells supernatants were also collected and analysed by enzyme-linked immunosorbant assay (ELISA) to investigate changes in pro-inflammatory protein secretion. Protein extracted from lysed cells was used for western blotting analysis to investigate RANKL protein expression to determine changes to osteolytic activation. Lysed cells were also used for RNA extraction and subsequent cDNA synthesis for real-time quantitative polymerase chain reaction (RT-qPCR) in order to assess changes to pro-inflammatory gene expression.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 11 - 11
1 Nov 2021
Imwinkelried T Heuberger R Eggli S
Full Access

Introduction and Objective

Local cartilage defects in the knee are painful and mostly followed by arthritis. In order to avoid impaired mobility, the osteochondral defect might be bridged by a synthetic compound material: An osteoconductive titanium foam as an anchoring material in the subchondral bone and an infiltrated polymer as gliding material in contact with the surrounding natural cartilage.

Materials and Methods

Titanium foam cylinders (Ø38 mm) with porosities ranging from 57% to 77% were produced by powder metallurgy with two different grain sizes of the space holder (fine: 340 ± 110 μm, coarse: 530 ± 160 μm). The sintered titanium foam cylinders were infiltrated with UHMWPE powder on one end and UHMWPE bulk at the other end, at two different temperatures (160 °C, 200 °C), using a pressure of 20 MPa for 15 minutes. Smaller cylinders (Ø16 mm) were retrieved from the compound material by water jet cutting. The infiltration depths were determined by optical microscopy. The anchoring of the UHMWPE was measured by a shear test and the mechanical properties of the titanium foam were verified by a subsequent compression test. The tribological behaviour was investigated in protein containing liquid using fresh cartilage pins (Ø5 mm) sliding against a UHMWPE disc with or without a notch to simulate the gap between the implant and the surrounding cartilage. Friction coefficients were determined in a rotation tribometer and the cartilage wear in a multidirectional six-station tribometer from AMTI (load 10 – 50 N, sliding speed 20 mm/s, 37 °C).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 93 - 93
1 Nov 2021
Schiavi J Remo A McNamara L Vaughan T
Full Access

Introduction and Objective

Bone remodelling is a continuous process whereby osteocytes regulate the activity of osteoblasts and osteoclasts to repair loading-induced microdamage. While many in vitro studies have established the role of paracrine factors (e.g., RANKL/OPG) and cellular pathways involved in bone homeostasis, these techniques are generally limited to two-dimensional cell culture, which neglects the role of the native extracellular matrix in maintaining the phenotype of osteocyte. Recently, ex vivo models have been used to understand cell physiology and mechanobiology in the presence of the native matrix. Such approaches could be applicable to study the mechanisms of bone repair, whilst also enabling exploration of biomechanical cues. However, to date an ex vivo model of bone remodelling in cortical bone has not been developed. In this study, the objective was to develop an ex vivo model where cortical bone was subjected to cyclic strains to study the remodelling of bone.

Materials and Methods

Ex vivo model of bone remodelling induced by cyclic loading: At the day of culling, beam-shape bovine bone samples were cut and preserved in PBS + 5% Pen/Strep + 2 mM L-Glut overnight at 37°C. Cyclic strains were applied with a three-point bend system to induce damage with a regime at 16.66 mm/min for 5,000 cycles in sterile PBS in Evolve® bags (maximum strain 6%). A control group was cultured under static conditions.

Metabolic activity: Alamar Blue assays were performed after 1 and 7 days of ex vivo culture for each group (Static, Loaded) and normalized to weight.

Bone remodelling: ALP activity was assessed in the media at day 1 and 7. After 24 hours cell culture conditioned media (CM) was collected from each group and stored at −80°C. RAW264.7 cells were cultured with CM for 6 days, after which the samples were stained for TRAP, to determine osteoclastogenesis, and imaged.

Histomorphometry: Samples were cultured with calcein for 3 days to label bone formation between day 4 and 7. Fluorescent images were captured at day 7. μCT scanning was performed at 3 μm resolution after labelling samples with BaSO4 precipitate to quantify bone damage.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 100 - 100
1 Nov 2021
Papadia D Comincini F Pirchio P Puggioni V Bellanova G
Full Access

Introduction and Objective

Management of bone loss associated with bone contamination or infection represents a double biological and clinical challenge frequent in traumatology. The advent of new biomaterials can allow a different approach in the treatment of bone gap. The purpose of this study was to evaluate the prophylactic and therapeutic effectiveness of addition of a new absorbable bone substitute (BS) eluting different antibiotics in reconstruction of bone defects after infections and fractures with soft tissue damage.

Materials and Methods

We conducted a review of patients with contaminated or infected bone defects treated using a new biomaterial, a porous composite of collagen matrices and Beta tricalcium phosphate (β TCP), able to provide a long-term release of different antibiotics. We have included treatment of osteomyelitis and osteosynthesis of exposed fracture (Gustilo Anderson 1–3b) or fractures with soft tissue damage and high risk of contamination. Surgical technique included debridement filling bone defect with BS eluting antibiotics, osteosynthesis (plate, nail, external fixator, kirschner wire), soft tissue coverage, and systemic antibiotic therapy. Radiographic and clinical data including complications (wound dehiscence, superficial or deep infection, osteomyelitis) were collected.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 104 - 104
1 Nov 2021
Camera A Tedino R Cattaneo G Capuzzo A Biggi S Tornago S
Full Access

Introduction and Objective

Difficult primary total knee arthroplasty (TKA) and revision TKA are high demanding procedures. Joint exposure is the first issue to face off, in order to achieve a good result. Aim of this study is to evaluate the clinical and radiological outcomes of a series of patients, who underwent TKA and revision TKA, where tibial tubercle osteotomy (TTO) was performed.

Materials and Methods

We retrospectively reviewed a cohort of 79 consecutives TKAs where TTO was performed, from our Institution registry. Patients were assessed clinically and radiographically at their last follow-up (mean, 7.4 ± 3.7 years). Clinical evaluation included the Knee Society Score (KSS), the pain visual analogue scale (VAS), and range of motion. Radiological assessment included the evaluation of radiolucent lines, osteolysis, cortical bone hypertrophy, time of bone healing of the TTO fragment, and the hardware complication.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 5 - 5
1 Nov 2021
Hara M Yamazaki K
Full Access

Introduction and Objective

Nonunion is incomplete healing of fracture and fracture that lacks potential to heal without further intervention. Nonunion commonly presents with persistent pain, swelling, or instability. Those symptoms affect patient quality of life. It is known that using low intensity pulsed ultrasound (LIPUS) for fresh fractures promotes healing. However, effectiveness of LIPUS for nonunion is still controversial. If LIPUS is prove to be effective for healing nonunion, it can potentially provide an alternative to surgery. In addition, we can reduce costs by treating nonunion with LIPUS than performing revision surgery.

Materials and Methods

The two authors carried out a systematic search of PubMed, Ovid MEDLINE, and the Cochrane Library. Meta-analysis of healing rate in nonunion and delayed union patients who underwent LIPUS was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) instruction method using a random effects model.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 39 - 39
1 Nov 2021
Gögele CL Müller S Pradel A Wiltzsch S Lenhart A Hornfeck M Rübling A Kühl H Schäfer-Eckart K Weiger TM Schulze-Tanzil G
Full Access

Introduction and Objective

Regeneration of cartilage injuries is greatly limited. Therefore, cartilage injuries are often the starting point for later osteoarthritis. In the past, various bioactive glass (BG) scaffolds have been developed to promote bone healing. Due to the fact that they induce the deposition of hydroxyapatite (HA) -the main component of bone matrix, these BG types are not suitable for chondrogenesis. Hence, a novel BG (Car12N) lacking HA formation, was established. Since BG are generally brittle the combination with polymers is helpful to achieve suitable biomechanic stability. The aim of this interdisciplinary project was to investigate the effects of biodegradable polymer Poly(D,L-lactide-co-glycolide) (PLLA) infiltration into a Car12N scaffold for cartilage tissue engineering.

Materials and Methods

BG scaffolds were infiltrated with PLLA using phase separation within a solvent. Pure BG Car12N scaffolds served as control. To assess whether the polymer was homogeneously distributed the polymer to glass ratio and pore contents in the upper, middle and lower third of the scaffolds were examined by light microscopy. For a more precise characterization of the scaffold topology, the glass strut length, the glass strut diameter and the pore circumference were also measured. Leaching tests in 0.1M HCl solution over 8 days were used to allow a gel layer formation on the scaffolds surface. Non-leached and leached scaffolds were subjected to strength testing. Cytotoxicity of the scaffolds with and without polymer was tested according to standards. Scaffolds were colonized with 27.777.8 per cm3 primary porcine articular chondrocytes (pACs) or primary human mesenchymal stromal cells (hMSCs), respectively. After cultivation for up to 35 days, the vitality, quantitative DNA and sulfated glycosaminoglycan (sGAG) contents per scaffold were determined.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 43 - 43
1 Nov 2021
Peiffer M Arne B Sophie DM Thibault H Kris B Jan V Audenaert E
Full Access

Introduction and Objective

Forced external rotation is hypothesized as the key mechanism of syndesmotic ankle injuries. This complex trauma pattern ruptures the syndesmotic ligaments and induces a three-dimensional deviation from the normal distal tibiofibular joint configuration. However, current diagnostic imaging modalities are impeded by a two-dimensional assessment, without taking into account ligamentous stabilizers. Therefore, our aim is two-fold: (1) to construct an articulated statistical shape model of the normal ankle with inclusion of ligamentous morphometry and (2) to apply this model in the assessment of a clinical cohort of patients with syndesmotic ankle injuries.

Materials and Methods

Three-dimensional models of the distal tibiofibular joint were analyzed in asymptomatic controls (N= 76; Mean age 63 +/− 19 years), patients with syndesmotic ankle injury (N = 13; Mean age 35 +/− 15 years), and their healthy contralateral equivalent (N = 13). Subsequently, the statistical shape model was generated after aligning all ankles based on the distal tibia. The position of the syndesmotic ligaments was predicted based on previously validated iterative shortest path calculation methodology. Evaluation of the model was described by means of accuracy, compactness and generalization. Canonical Correlation Analysis was performed to assess the influence of syndesmotic lesions on the distal tibiofibular joint congruency.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 146 - 146
1 Nov 2021
Antoniou J
Full Access

Osteoarthritis (OA) is a painful and disabling chronic condition that constitutes a major challenge to health care worldwide. There is currently no cure for OA and the analgesic pharmaceuticals available do not offer adequate and sustained pain relief, often being associated with significant undesirable side effects. Another disease associated with degenerating joints is Intervertebral disc degeneration (IVDD) which is a leading cause of chronic back pain and loss of function. It is characterized by the loss of extracellular matrix, specifically proteoglycan and collagen, tissue dehydration, fissure development and loss of disc height, inflammation, endplate sclerosis, cell death and hyperinnervation of nociceptive nerve fibers. The adult human IVD seems incapable of intrinsic repair and there are currently no proven treatments to prevent, stop or even retard disc degeneration. Fusion is currently the most common surgical treatment of symptomatic disc disease. However, radiographic follow-up studies have revealed that many patients develop adjacent segment disc degeneration due to altered spine biomechanics. The development of safe and efficacious disease modifying OA drugs (DMOADs) that treat pain and inflammation in joints will improve our ability to control the disease. I addition, a biologic treatment of IVDD is desirable. This presentation will provide an overview of recent advances and future prospects of a multimodal biologic treatment of OA, and IVDD. We will focus on Link N, a naturally occurring peptide representing the N terminal region of link protein and the first 1–8 residues of Link N (short Link N, sLN) responsible for the biologic therapy in question.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 123 - 123
1 Nov 2021
Heydar A Şirazi S
Full Access

Introduction and Objective

Pectus carinatum is a common congenital anterior chest wall deformity, characterized by outward protrusion of sternum and ribcage resulted from rib cartilage overgrowth. The protrusion may be symmetrical or asymmetrical. Pectus carinatum association with mitral valve diseases, Marfan's syndrome, and scoliosis enforces that poor connective tissue development as possible etiological factor. Despite the coexistence of pectus carinatum and scoliosis has attracted the attention of some researchers, the association between pectus carinatum and the other spinal deformities has not been studied comprehensively. The frequency of spinal deformity in patients with pectus carinatum and the mutual relationships of their subtypes are needed to be studied to determine the epidemiological character of the combined deformity and to plan patient evaluation and management. Our study aimed to investigate the association, define the incidence and evaluate the characteristics between different types of spinal deformities and Pectus carinatum.

Materials and Methods

Radiological and physical examinations were performed for 117 pectus carinatum patients in Marmara university hospital/Turkey in the years between 2006 and 2013. The incidence of spinal deformity was calculated. Spinal deformities were classified as scoliosis, kyphosis, kyphoscoliosis, and spinal asymmetry, whereas pectus carinatum were subdivided into symmetric and asymmetric subgroups. The relationship between spinal deformities and the symmetrical-asymmetric subtype of pectus excavatum was statistically analyzed, Pearson chi-square test was used to compare the association of qualitative data. The significance level was accepted as p <0.05. Lastly, the angular values of the deformities of scoliosis and kyphosis patients were measured using the Cobb method. In this way, the magnitude of the deformity was given as a numerical value.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 125 - 125
1 Nov 2021
Sánchez G Cina A Giorgi P Schiro G Gueorguiev B Alini M Varga P Galbusera F Gallazzi E
Full Access

Introduction and Objective

Up to 30% of thoracolumbar (TL) fractures are missed in the emergency room. Failure to identify these fractures can result in neurological injuries up to 51% of the casesthis article aimed to clarify the incidence and risk factors of traumatic fractures in China. The China National Fracture Study (CNFS. Obtaining sagittal and anteroposterior radiographs of the TL spine are the first diagnostic step when suspecting a traumatic injury. In most cases, CT and/or MRI are needed to confirm the diagnosis. These are time and resource consuming. Thus, reliably detecting vertebral fractures in simple radiographic projections would have a significant impact. We aim to develop and validate a deep learning tool capable of detecting TL fractures on lateral radiographs of the spine. The clinical implementation of this tool is anticipated to reduce the rate of missed vertebral fractures in emergency rooms.

Materials and Methods

We collected sagittal radiographs, CT and MRI scans of the TL spine of 362 patients exhibiting traumatic vertebral fractures. Cases were excluded when CT and/or MRI where not available. The reference standard was set by an expert group of three spine surgeons who conjointly annotated (fracture/no-fracture and AO Classification) the sagittal radiographs of 171 cases. CT and/or MRI were used confirm the presence and type of the fracture in all cases. 302 cropped vertebral images were labelled “fracture” and 328 “no fracture”. After augmentation, this dataset was then used to train, validate, and test deep learning classifiers based on the ResNet18 and VGG16 architectures. To ensure that the model's prediction was based on the correct identification of the fracture zone, an Activation Map analysis was conducted.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 128 - 128
1 Nov 2021
Stallone S Trisolino G Zarantonello P Ferrari D Papaleo P Napolitano F Santi GM Frizziero L Liverani A Gennaro GLD
Full Access

Introduction and Objective

Virtual Surgical Planning (VSP) is becoming an increasingly important means of improving skills acquisition, optimizing clinical outcomes, and promoting patient safety in orthopedics and traumatology. Pediatric Orthopedics (PO) often deals with the surgical treatment of congenital or acquired limbs and spine deformities during infancy. The objective is to restore function, improve aesthetics, and ensure proper residual growth of limbs and spine, using osteotomies, bone grafts, age-specific or custom-made hardware and implants.

Materials and Methods

Three-dimensional (3D) digital models were generated from Computed Tomography (CT) scans, using free open-source software, and the surgery was planned and simulated starting from the 3D digital model. 3D printed sterilizable models were fabricated using a low-cost 3D printer, and animations of the operation were generated with the aim to accurately explain the operation to parents. All procedures were successfully planned using our VSP method and the 3D printed models were used during the operation, improving the understanding of the severely abnormal bony anatomy.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 147 - 147
1 Nov 2021
Valente C Haefliger L Favre J Omoumi P
Full Access

Introduction and Objective

To estimate the prevalence of acetabular ossifications in the adult population with asymptomatic, morphologically normal hips at CT and to determine whether the presence of labral ossifications is associated with patient-related (sex, age, BMI), or hip-related parameters (joint space width, and cam- and pincer-type femoroacetabular impingement morphotype).

Materials and Methods

We prospectively included all patients undergoing thoracoabdominal CT over a 3-month period. After exclusion of patients with a clinical history of hip pathology and/or with signs of osteoarthritis on CT, we included a total of 150 hips from 75 patients. We analyzed the presence and the size of labral ossifications around the acetabular rim. The relationships between the size of labral ossifications and patient- and hip-related parameters were tested using multiple regression analysis.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 47 - 47
1 Nov 2021
Gindraux F
Full Access

The human amniotic membrane (hAM), derived from the placenta, possesses a low (nay inexistant) immunogenicity and exerts an anti-inflammatory, anti-fibrotic, antimicrobial, antiviral and analgesic effect. It is a source of stem cells and growth factors promoting tissue regeneration. hAM acts as an anatomical barrier with adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability) preventing the proliferation of fibrous tissue and promoting early neovascularization of the surgical site. Cryopreservation and lyophilization, with sometimes additional decellularization process, are the main preservation methods for hAM storage.

We examined the use of hAM in orthopaedic and maxillofacial bone surgery, specially to shorten the induced membrane technique (Gindraux, 2017). We investigated the cell survival in cryopreserved hAM (Laurent, 2014) and the capacity of intact hAM of in vitro osteodifferentiation (Gualdi, 2019). We explored its in vivo osteogenic potential in an ectopic model (Laurent, 2017) and, with Inserm U1026 BioTis, in a calvarial defect (Fenelon, 2018). Still piloted by U1026, decellularization and/or lyophilization process were developed (Fenelon, 2019) and, processed hAM capacities was assessed for guided bone regeneration (Fenelon 2020) and induced membrane technique (Fenelon, 2021) in mice.

We reported a limited function of hAM for bone defect management. In this light, we recognized medication-related osteonecrosis of the jaw (MRONJ) as appropriate model of disease to evaluate hAM impact on both oral mucosa and bone healing. We treated height compassionate patients (stage II, III) with cryopreserved hAM. A multicentric randomized clinical study (PHRC-I 2020 funding) will be soon conducted in France (regulatory and ethical authorization in progress).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 150 - 150
1 Nov 2021
Ragni E Viganò M Orfei CP Colombini A De Luca P Libonati F de Girolamo L
Full Access

Introduction and Objective

Hyaluronic acid (HA) is an effective option for the treatment of osteoarthritis (OA) patients due to several properties such as normalization of the mechanical and rheological properties of the synovial fluid and amelioration of OA symptoms and joints function by promoting cartilage nutrition. Since OA progression is also significantly related to oxidative stress and reactive oxygen species (ROS), sodium succinate (SS) is envisioned as a promising compound for cartilage treatment by providing antioxidant defense able to normalize intracellular metabolism and tissue respiration via mitochondrial mechanism of action. The scope of this study was to investigate on an in vitro inflammatory model the efficacy of Diart® product, a combination of HA and SS.

Materials and Methods

Donor-matched chondrocytes and synoviocytes were obtained from KL 3–4 OA patients undergoing total knee replacement. At passage 4, inflammation was promoted with 1 ng/ml IL-1B for 48 hours in absence and presence of Diart® at 1:3 dilution rate. Nitric oxide (NO) from cell culture supernatant was measured by Griess reaction. Mitochondrial and cytoplasmatic ROS evaluation was assessed by flow cytometry with MitoSox and dichlorodihydrofluorescein diacetate (DCFDA) assays. Gene expression of inflammation/oxidative stress-related transcripts (MMP1/MMP3/INOS/COX2) was evaluated by qRT-PCR using TBP as reference.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 49 - 49
1 Nov 2021
Barcik J Ernst M Buchholz T Constant C Zeiter S Gueorguiev B Windolf M
Full Access

Introduction and Objective

It is widely accepted that interfragmentary strain stimulus promotes callus formation during secondary bone healing. However, the impact of the temporal variation of mechanical stimulation on fracture healing is still not well understood. Moreover, the minimum strain value that initiates callus formation is unknown. The goal of this study was to develop an active fixation system that allows for in vivo testing of varying temporal distribution of mechanical stimulation and that enables detection of the strain limit that initiates callus formation.

Materials and Methods

We employed a previously established wedge defect model at the sheep tibia. The model incorporates two partial osteotomies directed perpendicularly to each other, thus creating a bone fragment in the shape of a wedge. The defect was instrumented with an active fixator that tilts the wedge around its apex to create a gradient of interfragmentary strain along the cutting line. The active fixator was equipped with a force and displacement sensors to measure the stiffness of the repair tissue during the course of healing. We developed a controller that enabled programming of different stimulation protocols and their autonomous execution during the in vivo experiment. The system was implanted in two sheep for a period of five weeks. The device was configured to execute immediate stimulation for one animal (stimulation from Day 1), and delayed stimulation for the other (stimulation from Day 22). The daily stimulation protocol consisted of 1’000 loading events evenly distributed over 12 hours from 9:00 am to 9:00 pm. The healing progression was monitored by the in vivo stiffness measurements provided by the fixator and by weekly radiographs. The impact of the local strain magnitude on bone formation was qualitatively evaluated on a post-mortem high-resolution CT scan of the animal with immediate stimulation.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 58 - 58
1 Nov 2021
Soubrier A Kasper H Alini M Jonkers I Grad S
Full Access

Introduction and Objective

Low back pain (LBP) is a major cause of long-term disability in adults worldwide and it is frequently attributed to intervertebral disc (IVD) degeneration. So far, no consensus has been reached regarding appropriate treatment and LBP management outcomes remain disappointing. Spine unloading or traction protocols are common non-surgical approaches to treat LBP. These treatments are widely used and result in pain relief, decreased disability or reduced need for surgery. However, the underlying mechanisms -namely, the IVD unloading mechanobiology- have not yet been studied. The aim of this first study was to assess the feasibility of IVD unloading in a large animal organ culture set-up and evaluate its impact on mechanobiology.

Materials and Methods

Bovine tail discs (diameter 16.1 mm ± 1.2 mm), including the endplates, were isolated and prepared for culture. Beside the day0 sample that was processed directly, three other discs were cultured for 3 days and processed on day4. One disc was loaded in the bioreactor according to a previously established physiological (compressive) loading protocol (2h/day, 0.2Hz). The two other discs were embedded in biocompatible resin, leaving the cartilage endplate free to permit nutrient diffusion, and fitted in the traction holder; one of these discs was kept in free swelling conditions, whereas the second was submitted to cyclic traction loading (2h/day, 0.2Hz) corresponding to 30% of the animal body weight corrected for organ culture.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 134 - 134
1 Nov 2021
Lakhani A Sharma E
Full Access

Introduction and Objective

Osteoarthritis of the knee joint is common in old age population in every part of world. Pain is the major source of disability in patients with osteoarthritis of the knee joint. Subchondral bone marrow is richly innervated with nociceptive pain fibers and may be a source of pain in patients with symptomatic degenerative joint disease. Current therapy for managing bone marrow oedema is core decompression (CD), combining core decompression and injection of hydroxyapatite cement or autologus chondrocyte supplementtion. But all of this work has been done in femoral head and authors documented good result with minimal complication. There are various studies in literature suggesting treatment to repair BME by restoring support and relieving abnormal stresses with accepted internal fixation and bone stimulating surgical techniques in relieving knee OA pain. In this study, we present efficacy of knee arthroscopy with adjunctive core decompression and supplementation with structural scaffold to improve self-rated visual analog scale (VAS) pain scores, rate of conversion to arthroplasty, and patient satisfaction levels.

Materials and Methods

The study included patients aged between 40 and 75 years old, with pain in the knee for at least six months, associated with high-signal MRI lesion on T2 sequences, on the tibia or femur. Trephine was used as the bone decompression instrument. Trephine has a diameter of 8–10 mm and operation with trephine requires that a cortical incision window be made prior to decompression treatment, thus necessitating strict disinfection. This procedure was done under spinal anesthesia. After diagnostic arthroscopy, decompression was done under C –ARM in desired area on MRI. After decompression, defect was filled with Poly ester urea's scaffold impregnated with BMAC.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 136 - 136
1 Nov 2021
Huard J
Full Access

Geriatric syndromes could lead individuals to exhibit significant mobility and psychological deficits resulting in significant healthcare costs. Thus, identifying strategies to delay aging, or prevent progressive loss of tissue homeostasis could dramatically restore the function and independence of millions of elderly patients and significantly improve quality of life. One of the fundamental properties of aging is the accumulation of senescent cells and senescence associated secretory phenotypes (SASPs) that needs to be treated in wide range of therapeutics including orthobiologics. Senolytic compounds selectively target and kill senescent cells and inhibit anti-apoptotic pathways that are upregulated in senescent cells thereby inducing apoptotic cell death and abrogating systemic SASP factors. We have also shown that blocking fibrosis with Losartan (TGF-β1 blocker) can improve musculoskeletal healing and cartilage repair by reducing the amount of fibrosis. Thus, we hypothesize that administration of anti-fibrotic agents will enhance the beneficial effects of orthobiologics. The safety and efficacy of several senolytic and anti-fibrotic agents to delay age-related dysfunction and improve the function of orthobiologics have been demonstrated in a variety of animal models (in vivo). Overall, our innovative approaches target senescent cells (inflammation) and TGF-β1 (fibrosis) to enhance the clinical efficacy and use of orthobiologics for musculoskeletal repair. We will also discuss ongoing active clinical trials on orthobiologics to aiming at evaluating the safety and efficacy of senolytic agent (Fisetin) and anti-fibrotic agent (Losartan), used independently or in combination, to enhance the beneficial effects of orthobiologics for patients afflicted with musculoskeletal diseases and conditions.


Introduction and Objective

Achilles tendon defect is difficult problem for orthopedic surgeon, and therefore the development of new treatments is desirable. Platelet-rich fibrin (PRF), dense fibrin scaffold composed of a fibrin matrix containing many growth factors, is recently used as regenerative medicine preparation. However, few data are available on the usefulness of PRF on Achilles tendon healing after injury. The objective of this study is to examine whether PRF promotes the healing of Achilles tendon defect in vivo and evaluated the effects of PRF on tenocytes in vitro.

Materials and Methods

PRF were prepared from rats according to international guidelines on the literature. To create rat model for Achilles tendon defect, a 4-mm portion of the right Achilles tendon was completely resected, and PRF was placed into the gap in PRF group before sewing the gap with nylon sutures. To assess the histological healing of Achilles tendon defect, Bonar score was calculated using HE, Alcian-blue, and Picosirius-red staining section. Basso, Beattie, Bresnahan (BBB) score was used for the evaluation of motor functional recovery. Biomechanical properties including failure tensile load, ultimate tensile stress, breaking elongation, and elastic modulus were measured. We examined the effects of PRF on tenocytes isolated from rat Achilles tendon in vitro. The number of viable cells were measured by MTS assay, and immunostaining of ki-67 was used for detection of proliferative cells. Migration of tenocytes was evaluated by wound closure assay. Protein or gene expression level of extracellular matrix protein, such as collagen, were evaluated by immunoblotting, immunofluorescence, or PCR. Phosphorylation level of AKT, FGF receptor, or SMAD3 was determined by western blotting. Inhibitory experiments were performed using MK-2206 (AKT inhibitor), FIIN-2 (FGFR inhibitor), SB-431542 (TGF-B receptor inhibitor), or SIS3 (SMAD3 inhibitor). All p values presented are two-sided and p values < 0.05 were considered statistically significant.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 138 - 138
1 Nov 2021
Kinitz R Heyne E Thierbach M Wildemann B
Full Access

Introduction and Objective

Chronic tendinopathy is a multifactorial disease and a common problem in both, athletes and the general population. Mechanical overload and in addition old age, adiposity, and metabolic disorders are among the risk factors for chronic tendinopathy but their role in the pathogenesis is not yet unequivocally clarified.

Materials and Methods

Achilles tendons of young (10 weeks) and old (100 weeks) female rats bred for high (HCR) and low (LCR) intrinsic aerobic exercise capacity were investigated. Both Achilles tendons of 28 rats were included and groups were young HCR, young LCR, old HCR, and old LCR (n = 7 tendons per group/method). In this rat model, genetically determined aerobic exercise capacity is associated with a certain phenotype as LCR show higher body weight and metabolic dysfunctions in comparison to HCR. Quantitative real-time PCR (qPCR) was used to evaluate alterations in gene expression. For histological analysis, semi-automated image analysis and histological scoring were performed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 52 - 52
1 Nov 2021
Lotz J
Full Access

Chronic low back pain (cLBP) is a complex, multifaceted disorder where biological, psychological, and social factors affect its onset and trajectory. Consequently, cLBP encompasses many different disease variants, with multiple patient-specific mechanisms. The goal of NIH Back Pain Consortium (BACPAC) Research Program is to develop understanding of cLBP mechanisms and to develop algorithms that optimally match specific treatments to individual patients. To accomplish this, one research activity of BACPAC is to develop theoretical models for chronic low back pain based on the current state of knowledge in the scientific community, and to interrogate the relationships implied by the theoretical models using data generated by or available to BACPAC. The models consider biopsychosocial perspectives, and encompass both peripheral (i.e. low back) and central (i.e. spinal and supra-spinal) factors as well as proposed mechanisms of action of cLBP treatments. However, absent explanations, models/algorithms may fall short of regulatory requirements and clinician expectations, and ultimately may not be embraced by physicians and patients. To address this, BACPAC is developing a clinical utility roadmap (CUR) to clarify how models will be used in practice for selecting optimal treatments, monitoring response to treatment, and reducing health care utilization. This presentation will review the goals of BACPAC and how theoretical models and CUR are being used to support computational knowledge networks to integrate data from deeply phenotyped cLBP patients.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 31 - 31
1 Nov 2021
Barry F
Full Access

Osteoarthritis (OA) is a major global disease with increasing prevalence. It is one of the most significant causes of disability worldwide and represents a major burden in terms of healthcare delivery and impact on the quality of life of patients. It is a cause of severe chronic pain and has given rise to alarming levels of opioid use and addiction. Despite this prevalence, there are no disease-modifying treatments which delay or reverse the degrative changes within joints which are characteristics of the disease. All treatments are symptom-modifying with the exception of joint arthroplasty, which is currently the most common surgical procedure carried out in US hospitals. Several pharmaceutical and biological interventions have been tested in recent years, including metalloproteinase inhibitors, chondrogenic agents such as Kartogenin, IL-1 antagonists and monoclonal antibodies. So far, none of these has provided an effective disease-modifying treatment. Cellular therapies have a great deal of promise because of their anti-inflammatory and regenerative effects. Mesenchymal stromal cells (MSCs) have been widely studied as a treatment for OA in preclinical and clinical assessments with generally positive results. As the clinical testing of these cells proceeds serious questions emerge relating to the quality and consistency of the therapeutic product and the need for better standardisation with regard to, for example, the tissue source and expansion conditions. Of equal importance is the need for deeper insight into the therapeutic mechanism, specifically the activity and phenotype of cells transplanted to the OA environment, their fate and interaction with local cells.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 32 - 32
1 Nov 2021
Amadio PC
Full Access

Carpal tunnel syndrome (CTS) is the most common condition affecting the hand, with a prevalence of 2–3% in most populations, and a lifetime incidence over 10%. There is consensus that CTS results from increased pressure in the carpal tunnel, which eventually affects nerve function, but, aside from direct trauma and space occupying lesions, there is no consensus on what causes the pressure to rise. In the absence of an identifiable biological mechanism, the most common treatment involves surgical opening of the carpal tunnel. Recent data suggests that CTS patients demonstrate, in the carpal tunnel synovium and subsynovial connective tissue (SSCT), evidence of cellular senescence, with a senescence associated secretory phenotype (SASP). This finding suggests the potential for a biological treatment for CTS with senolytic drugs. This presentation will review the evidence for CTS as a disease of cellular senescence, and our preliminary data on the effects of senolytics, including in a relevant animal model of CTS and SSCT fibrosis.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 132 - 132
1 Nov 2021
Chalak A Singh P Singh S Mehra S Samant PD Shetty S Kale S
Full Access

Introduction and Objective

Management of gap non-union of the tibia, the major weight bearing bone of the leg remains controversial. The different internal fixation techniques are often weighed down by relatively high complication rates that include fractures which fail to heal (non-union). Minimally invasive techniques with ring fixators and bone transport (distraction osteogenesis) have come into picture as an alternative allowing alignment and stabilization, avoiding a graduated approach. This study was focused on fractures that result in a gap non-union of > 6 cm. Ilizarov technique was employed for management of such non-unions in this case series. The Ilizarov apparatus consists of rings, rods and kirschner wires that encloses the limb as a cylinder and uses kirschner wires to create tension allowing early weight bearing and stimulating bone growth. Ilizarov technique works on the principle of distraction osteogenesis, that is, pulling apart of bone to stimulate new bone growth. Usually, 4–5 rings are used in the setup depending on fracture site and pattern for stable fixation. In this study, we demonstrate effective bone transport and formation of gap non-union more than 6 cm in 10 patients using only 3 rings construct Ilizarov apparatus.

Materials and Methods

This case study was conducted at Dr. D. Y. Patil Medical Hospital, Navi Mumbai, Maharashtra, India. The study involved 10 patients with a non-union or gap > 6 cm after tibial fracture. 3 rings were used in the setup for the treatment of all the patients. Wires were passed percutaneously through the bone using a drill and the projecting ends of the wires were attached to the metal rings and tensioned to increase stability. The outcome of the study was measured using the Oxford Knee scoring system, Functional Mobility Scale, the American Foot and Ankle Score and Visual Analog Scale. Further, follow up of patients was done upto 2 years.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 73 - 73
1 Nov 2021
Camera A Tedino R Cattaneo G Capuzzo A Biggi S Tornago S
Full Access

Introduction and Objective

A proper restoration of hip biomechanics is fundamental to achieve satisfactory outcomes after total hip arthroplasty (THA). A global hip offset (GO) postoperatively reduction of more than 5 mm was known to impair hip functionality after THA. This study aimed to verify the restoration of the GO radiographic parameter after primary THA by the use of a cementless femoral stem available in three different offset options without length changing.

Materials and Methods

From a consecutive series of 201 patients (201 hips) underwent primary cementless THA in our centre with a minimum 3-year follow up, 80 patients (80 hips) were available for complete radiographic evaluation for GO and limb length (LL) and clinical evaluation with Harris hip score (HHS). All patients received the same femoral stem with three different offset options (option A with – 5 mm offset, option B and option C with + 5 mm offset, constant for each sizes) without changing stem length.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 78 - 78
1 Nov 2021
Jolic M Shah FA Omar O Emanuelsson L Norlindh B Engqvist H Engstrand T Palmquist A Thomsen P
Full Access

Introduction and Objective

Calcium phosphates are among the most commonly used bone graft substitute materials. Compositions containing predominantly monetite (∼84.7%) with smaller additions of beta-tricalcium phosphate (β-TCP; ∼8.3%) and calcium pyrophosphate (Ca-PP; ∼6.8%) have previously been demonstrated to exhibit osteoinductive properties. Such a multi-component calcium phosphate bioceramic was fashioned in the form of hollowed-out, dome-shaped devices (15 mm diameter, 4 mm height), each reinforced with a 3D printed Ti6Al4V ELI frame. With the aim to induce bone formation beyond the skeletal envelope, these devices were investigated in vivo using a sheep (Ovis aries) occipital bone model.

Materials and Methods

The bioceramic composition was prepared from a mixture of β-TCP/dicalcium pyrophosphate and monocalcium phosphate monohydrate powders mixed with glycerol. The Ti6Al4V ELI frame was positioned into a dome-shaped mould and bioceramic paste was poured over the frame and allowed to set, in sterile water, prior to removal from the mould. In adult female sheep (n=7), the devices were positioned directly over the bone and stabilised using self-drilling screws. After 52 weeks, the devices were retrieved, resin embedded, and used for X-ray micro-computed tomography (micro-CT), histology, backscattered electron scanning electron microscopy (BSE-SEM), energy dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 80 - 80
1 Nov 2021
Graziani G Sartori M Fini M Sassoni E Boi M Farè S Baldini N
Full Access

Introduction and Objective

The choice of appropriate characteristics is crucial to favor a firm bonding between orthopedic implants and the host bone and to permit bone regeneration. In particular, the morphology and composition of the biointerface plays a crucial role in orchestrating precise cellular responses. Here, to modulate the biointerface, we propose new biomimetic coatings, having multi-scale nano- to micro- morphological cues and a composition mimicking the mineral phase of bone.

Materials and Methods

Films on various substrates are obtained by Ionized Jet Deposition (IJD), by ablation of biogenic apatite and annealing at 400°C for 1 hour. Films are proposed for functionalization of metallic implants, but application to heat sensitive porous (3D printed) substrates is also shown, as it permits to further boost biomimicry (by addition of collagen/gelatin), thus reproducing the architecture of cancellous bone. In IJD, coatings thickness can be selected by tuning deposition duration. Here, a 450 nm thickness is selected based on preliminary results. Micro-rough titanium alloy (Ti6Al4V) disks (roughness 5 μm) are used as a substrate for the deposition and as a control. The coatings are characterized in terms of composition (GI-XRD, EDS, FT-IR microscopy), morphology (FEG-SEM, AFM, data processing by ImageJ), mechanical properties (micro-scratch test) and dissolution profile in medium (pH 7.4, FEG-SEM). Then, their behavior is characterized in vitro (human bone marrow-derived mesenchymal stromal cells - hMSCs), by studying cells early adhesion (focal adhesion by vinculin staining), viability (Alamar Blue), morphology (SEM) and differentiation (expression of RUNX2, ALPL, SPARC and COL1A1, BMP2, BGLAP, osteocalcin, alkaline phosphatase, collagen type I) at 3, 7 and 14 days.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 59 - 59
1 Nov 2021
Basatvat S Williams R Snuggs J Laagland L Medzikovic A Bach F Liyanage D Ito K Tryfonidou M Maitre CL
Full Access

Introduction and Objective

Intervertebral disc (IVD) degeneration accompanying with low back pain is a serious worldwide problem. Even though, surgical treatments are available for pain relief, there is an urgent need to establish enduring cell-based remedies. Notochordal (NC) cells as the ancestor of nucleus pulposus (NP) cells in human IVD are a promising therapeutic target. It has been reported that the loss of NC cells after childhood could promote the onset of disc degeneration. Thus, we firstly, aimed to optimise the culture of NC cells in vitro without using the FCS in alginate (3D) culture systems, secondly, investigate their behaviour in healthy and degenerate niche and lastly, co-culture these cells with degenerated NP cells to assess their regeneration potentials.

Materials and Methods

Porcine NC cells were extracted using pronase treatment followed by overnight digestion in 0.01% collagenase II. After extraction, cells were culture in 1.2% alginate beads (gold standard 3D culture) in either low glucose DMEM or αMEM medium. Cells were harvested after 24 hours, 1 week and 2 weeks for gene expression analysis and formalin fixed paraffin embedding. Quantitative Real-Time PCR and Immuno-staining were performed for analysis of NC markers (KRT18, FOXA2 and T) and COL I as a negative marker. Next, NC cells were cultured in healthy and degenerate medium to assess their viability and behaviour.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 62 - 62
1 Nov 2021
Napoli N
Full Access

Fragility fractures are skeletal complications associated with type 2 diabetes (T2D) causing disability, hospitalization, impaired quality of life, and increased mortality. Increased circulating sclerostin and accumulation of advanced glycation end-products (AGEs) are two potential mechanisms underlying low bone turnover and increased fracture risk. We have recently shown that T2D affects the expression of genes controlling bone formation (SOST and RUNX2) and that accumulation of AGEs is associated with impaired bone formation in T2D. We hypothesized that Wnt/B- catenin target genes are down-regulated in bone of T2D subjects as a consequence of decreased SOST and AGEs accumulation. To this end, we studied gene expression in extracts of bone samples obtained from femoral heads of 14 subjects with relatively well-controlled T2D (HbA1c 6.5±1.7%) and 21 control, non-diabetic postmenopausal women (age >65 years) undergoing hip replacement. There were no differences in age (73.2± .8 vs. 75.2±8.5 years) or BMI (27.7±5.6 vs. 29.9±5.4 kg/m2) between control and T2D groups, respectively. Expression of LEF1 mRNA was significantly lower in T2D compared to non-diabetic subjects (p=0.002), while DKK1 was not different between groups (p=0.108). Correlation analysis showed that DKK1 (r2=0.038; p=0.043) and HbA1c (r2=0.503; p=0.048) increased with age in T2D. COL1A1 mRNA trended lower in T2D compared to controls (p=0.056). Bone volume (9,333 ± 1,443 vs. 15,53 ± 2,442 mm2; p=0.048), mineralized volume (9,278 ± 1,418 vs. 15,45 ± 2,444 mm2; p=0.048) and BV/TV (0,2125 ± 0,03114 vs. 0,3719 ± 0,03196 %; p=0.002) measured by bone histomorphometry were lower in T2D compared to controls. Our data show that even in patients with relatively good glycemic control, T2D decreases expression of Wnt/B-catenin target genes andCOL1A1, associated with decreased bone density. These results may help understand the mechanisms underlying bone fragility in T2D.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 68 - 68
1 Nov 2021
Monahan G Schiavi J Vaughan T
Full Access

Introduction and Objective

Individuals with type 2 diabetes (T2D) have a 3-fold increased risk of bone fracture compared to non-diabetics, with the majority of fractures occurring in the hip, vertebrae and wrists. However, unlike osteoporosis, in T2D, increased bone fragility is generally not accompanied by a reduction in bone mineral density (BMD). This implies that T2D is explained by poorer bone quality, whereby the intrinsic properties of the bone tissue itself are impaired, rather than bone mass. Yet, the mechanics remain unclear. The objective of this study is to (1) assess the fracture mechanics of bone at the structural and tissue level; and (2) investigate for changes in the composition of bone tissue along with measuring total fluorescent advanced glycation end products (fAGEs) from the skin, as T2D progresses with age in Zucker diabetic fatty (ZDF (fa/fa)) and lean Zucker (ZL (fa/+)) rats.

Materials and Methods

Right ulnae and skin sections were harvested from ZDF (fa/fa) (T2D) and ZL (fa/+) (Control) rats at 12 and 46 weeks (wks) of age (n = 8, per strain and age) and frozen. Right ulnae were thawed for 12 hrs before micro-CT (μCT) scanning to assess the microstructure and measure BMD. After scanning, ulnae were loaded until failure via three-point bending. Fourier transform-infrared microspectroscopy (FTIR) was used to measure various bone mineral- and collagen-related parameters such as, mineral-to-matrix ratio and nonenzymatic cross-link ratio. Finally, fAGEs were measured from skin sections using fluorescence spectrometry and an absorbance assay, reported in units of ng quinine/ mg collagen.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 74 - 74
1 Nov 2021
Conforti LG Faggiani M Risitano S
Full Access

Introduction and Objective

Interest for direct anterior approach (DAA) in hip hemiarthroplasty (HHA) has greatly increased in recent years, however which is the best surgical approach in hip replacement treating femoral neck fractures (FNFs) is already unclear. The aim of this study is to perform a radiographic and perioperative complications analysis by comparing the direct anterior approach (DAA) with the direct lateral approach (DLA) in patients treated with hemiarthroplasty for FNFs.

Materials and Methods

Patients with FNFs surgically treated between 2016–2020 with HHA were enrolled. The radiographical outcomes of DAA and DLA are compared. Several peri-operative and post-operative variables were evaluated: mean surgery time, complications as periprosthetic fractures or episodes of dislocation, the average of post-operative diaphyseal filling of the stem (Canal Fill Index, CFI), the extent of heterotopic ossification (HO) (simplified Broker classification) and metadiaphiseal bone loss (Paprosky classification) within one year from surgery.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 89 - 89
1 Nov 2021
Zderic I Caspar J Blauth M Weber A Koch R Stoffel K Finkemeier C Hessmann M Gueorguiev B
Full Access

Introduction and Objective

Intramedullary nails are frequently used for treatment of unstable distal tibia fractures. However, insufficient fixation of the distal fragment could result in delayed healing, malunion or nonunion. The quality of fixation may be adversely affected by the design of both the nail and locking screws, as well as by the fracture pattern and bone density. Recently, a novel concept for angular stable nailing has been developed that maintains the principle of relative stability and introduces improvements expected to reduce nail toggling, screw migration and secondary loss of reduction. It incorporates polyether ether ketone (PEEK) inlays integrated in the distal and proximal canal portions of the nail for angular stable screw locking. The nail can be used with new standard locking screws and low-profile retaining locking screws, both designed to enhance cortical fixation. The low-profile screws are with threaded head, anchoring in the bone and increasing the surface contact area due to the head's increased diameter.

The objective of this study was to investigate the biomechanical competence of the novel angular stable intramedullary nail concept for treatment of unstable distal tibia fractures, compared with four other nail designs in an artificial bone model under dynamic loading.

Materials and Methods

The distal 70 mm of thirty artificial tibiae (Synbone) were assigned to 5 groups for distal locking using either four different commercially available nails – group 1: Expert Tibia Nail (DePuy Synthes); group 2: TRIGEN META-NAIL with Internal Hex Captured Screws (Smith & Nephew); group 3: T2 Alpha with Locking Screws (Stryker); group 4: Natural Nail System featuring StabiliZe Technology (Zimmer) – or the novel angular stable TN-Advanced nail with low-profile screws (group 5, DePuy Synthes). The distal locking in all groups was performed using 2 mediolateral screws. All specimens were biomechanically tested under quasi-static and progressively increasing combined cyclic axial and torsional loading in internal rotation until failure, with monitoring by means of motion tracking.


Bone & Joint 360
Vol. 10, Issue 5 | Pages 12 - 13
1 Oct 2021


Bone & Joint 360
Vol. 10, Issue 4 | Pages 49 - 51
1 Aug 2021
Evans JT Welch M Whitehouse MR


Bone & Joint 360
Vol. 10, Issue 3 | Pages 38 - 39
1 Jun 2021
Das A


Bone & Joint 360
Vol. 10, Issue 2 | Pages 57 - 59
1 Apr 2021
Evans JT Whitehouse MR Evans JP


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 35 - 35
1 Mar 2021
Ng G Bankes M Daou HE Beaulé P Cobb J Jeffers J
Full Access

Abstract

OBJECTIVES

Although surgical periacetabular osteotomy (PAO) for hip dysplasia aims to optimise acetabular coverage and restore hip function, it is unclear how surgery affects capsular mechanics and joint stability. The purpose was to examine how the reoriented acetabular coverage affects capsular mechanics and joint stability in dysplastic hips.

METHODS

Twelve cadaveric dysplastic hips (n = 12) were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°) and performed internal-external rotations and abduction-adduction to 5 Nm in each rotational or planar direction. Each hip underwent a PAO, preserving the capsule, and was retested postoperatively in the robot. Paired sample t-tests compared the range of motion before and after PAO surgery (CI = 95%).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 36 - 36
1 Mar 2021
Langley B Whelton C Page R Chalmers O Cramp M Morrison S Dey P Board T
Full Access

Abstract

Objectives

The objective of this study was to determine the kinematic factor(s) underlying the reduction in walking velocity displayed by total hip arthroplasty (THA) patients in comparison to healthy controls during walking gait.

Methods

Eleven patients with well-functioning THA (71 ± 8 years, Oxford Hip Score = 46 ± 3) and ten healthy controls (61 ± 5 years) participated within this study. Sagittal plane lower limb kinematics were captured using a 10 camera Qualisys motion capture system, sampling at 200Hz, as participants walked overground at a self-selected pace. Bivariate linear regression was used to explore the relationship between walking velocity and a number of kinematic variables in a deterministic manner. Kinematic variables significantly associated with walking velocity were compared between THA and healthy groups utilising independent samples t-tests.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 32 - 32
1 Mar 2021
Graziani G Cappelletti M Ghezzi D Costantini P Fedi S De Carolis M Maltarello M Baldini N
Full Access

Infections are among the main complications connected to implantation of biomedical devices, having high incidence rate and severe outcome. Since their treatment is challenging, prevention must be preferred. For this reason, solutions capable of exerting suitable efficacy while not causing toxicity and/or development of resistant bacterial strains are needed. To address infection, inorganic antibacterial coatings, and in particular silver coatings, have been extensively studied and used in the clinical practice, but some drawbacks have been evidenced, such as scarce adhesion to the substrate, delamination, or scarce control over silver release.

Here, antibacterial nanostructured silver-based thin films are proposed, obtained by a novel plasma-assisted technique, Ionized Jet Deposition (IJD). Coatings are obtained by deposition of metallic silver targets. Films thickness is selected based on previous results aimed at measuring extent and duration of silver release and at evaluating toxicity to host cells (fibroblasts). Here, composition (grazing incidence XRD) and morphology (SEM) of the obtained coatings are characterized for deposition onto different substrates, both metallic and polymeric. For heat sensitive substrates, possible alterations caused by coatings deposition in terms of morphology (SEM) and composition (FT-IR) is assessed. Then, a proof-of-concept study of the capability of these films to inhibit microbial biofilm formation is performed by using two different supports i.e., the Calgary Biofilm Device and the microplates. To the best of the Authors knowledge, this is the first study describing the application of specific anti-biofilm analyses to nanostructured coatings. In particular, anti-biofilm activities are tested against the following pathogenic strains: Escherichia (E.) coli NCTC12923, Staphylococcus (S.) aureus ATCC29213 and S. aureus 86. Among these, the strain 86 is not only pathogen but it also possesses several antibiotic resistance genes, allowing the evaluation of the utilization of nanostructured coatings as an alternative anti-microbial system to face the global threat of antibiotic resistance.

Results indicate that films deposited from silver targets are composed of nanosized aggregates of metallic silver, indicating a perfect transfer of composition from the deposition target to the coatings.

Results obtained here indicate that the films have significant antibacterial and antibiofilm activity. In addition, they prove that the system can be successfully applied for evaluation of coatings antibacterial efficacy for biomedical applications.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 11 - 11
1 Mar 2021
Mak CC To K Fekir K Brooks R Khan W
Full Access

Abstract

Objective

SOX genes comprise a family of transcription factors characterised by a conserved HMG-box domain that confer pleiotropic effects on cell fate and differentiation through binding to the minor groove of DNA. Paracrine regulation and contact-dependant Notch signalling has been suggested to modulate the induction of SOX gene expression. The objective of this study is to investigate the crosstalk between mesenchymal stromal cells (MSCs) and chondrocytes by comparing SOX gene expression in their co-culture and respective monocultures.

Methods

Our study adopted an in vitro autologous co-culture of p0 adipose-derived MSCs (AMSCs) and articular chondrocytes derived from Kellgren-Lawrence Grade III/IV osteoarthritic knee joints (n=7). Cells were purified and co-cultured with one AMSC for every chondrocyte at 5000 cells/cm2. The AMSCs were characterised by a panel of MSC surface markers in flow cytometry and were allowed to undergo trilineage differentiation for subsequent histological investigation. SOX5, SOX6, and SOX9 expression of co-cultures and monoculture controls were quantified by TaqMan quantitative real-time PCR. Experiments were performed in triplicate.


Abstract

Objective

To compare the periprosthetic fracture mechanics between a collared and collarless fully coated cementless femoral stem in a composite femur.

Methods

Two groups of six composite femurs (‘Osteoporotic femur’, SawBones, WA USA) were implanted with either a collared (collared group) or collarless (collarless group) cementless femoral stem which was otherwise identical by a single experienced surgeon. Periprosthetic fractures of the femur were simulated using a previously published technique. High speed video recording was used to identify fracture mechanism. Fracture torque and angular displacement were measured and rotational work and system stiffness were estimated for each trial. Results were compared between collared and collarless group and the comparison was evaluated against previously published work using fresh frozen femurs and the same protocol.


Abstract

Objectives

Total hip arthroplasty (THA) procedures are physically demanding for surgeons. Repetitive mallet swings to impact a surgical handle (impactions), can lead to muscle fatigue, discomfort and injuries. The use of an automated surgical hammer may reduce fatigue and increase surgical efficiency. The aim of this study was to develop a method to quantify user's performance, by recording surface electromyography (sEMG), for automated and manual impactions.

Methods

sEMG signals were recorded from eight muscle compartments (arm and back muscles) of an orthopaedic surgeon during repetitions of manual and automated impaction tasks, replicating femoral canal preparation (broaching) during a THA. Each task was repeated, randomly, four times manually and four times with the automated impaction device. The mechanical outcomes (broaching efficiency and broach advancement) were quantified by tracking the kinematics of the surgical instrumentation. Root mean square (RMS) values and median frequency (MDF) were calculated for each task to, respectively, investigate which muscles were mostly involved (higher RMS) in each task and to quantify the decrease in MDF, which is an indicator of muscle fatigue.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 23 - 23
1 Mar 2021
Howgate D Oliver M Stebbins J Garfjeld-Roberts P Kendrick B Rees J Taylor S
Full Access

Abstract

Objectives

Accurate orientation of the acetabular component during a total hip replacement is critical for optimising patient function, increasing the longevity of components, and reducing the risk of complications. This study aimed to determine the validity of a novel VR platform (AescularVR) in assessing acetabular component orientation in a simulated model used in surgical training.

Methods

The AescularVR platform was developed using the HTC Vive® VR system hardware, including wireless trackers attached to the surgical instruments and pelvic sawbone. Following calibration, data on the relative position of both trackers are used to determine the acetabular cup orientation (version and inclination). The acetabular cup was manually implanted across a range of orientations representative of those expected intra-operatively. Simultaneous readings from the Vicon® optical motion capture system were used as the ‘gold standard’ for comparison. Correlation and agreement between these two methods was determined using Bland-Altman plots, Pearson's correlation co-efficient, and linear regression modelling.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 49 - 49
1 Mar 2021
Dixon A Wareen J Mengoni M Wilcox R
Full Access

Abstract

Objectives

Develop a methodology to assess the long term mechanical behavior of intervertebral discs by utilizing novel sequential state testing.

Methods

Bovine functional spinal units were sequentially mechanically tested in (1) native (n=8), (2) degenerated (n=4), and (3) treated states (n=4). At stage (2), artificial degeneration was created using rapid enzymatic degeneration, followed by a 24 hour hold period under static load at 42°C. At stage (3), nucleus augmentation treatments were injected with a hydrogel or a ‘sham’ (water, chondroitin sulfate) injection. The mechanical protocol employed applied a static load hold period followed by cyclic compressive loading between ∼350 and 750 N at 1 Hz. 1000 cycles were applied at each stage, and the final test on each specimen was extended up to 20000 cycles. To verify if test time can be reduced, functions were fitted using stiffness data up to 100, 1000, 2500, 5000, 10000 and 20000 cycles. Linear regression for the native specimens comparing the stiffness at various cycles to the stiffness at 20000 cycles was completed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 46 - 46
1 Mar 2021
Valverde J Kabariti R Smith J Kelly M Murray J
Full Access

Pre-operative anaemia can present in up to 30% of elective arthroplasty patients. The presence of anaemia increases the risk of requiring blood transfusion post-operatively as well as acts as an independent risk factor for poor outcome such as prosthetic joint infection. Recent international consensus on this topic has recommended a specific care pathway for screening patients with pre-operative anaemia using a simple bedside Heaemacue finger-prick test to detect in a simple and cost-effective manner, and then allow treatment of preoperative anaemia. This pathway was therefore incorporated in our trust.

This was a retrospective study done at a single tertiary-referral arthroplasty centre. Our data collection included the Heamacue test results and formal haemoglobin levels if they were performed as well as compliance and costs of each of the tests for patients listed for an elective shoulder, hip and knee arthroplasty between September and December 2018. Medical records and demographics were also collected for these patients for subgroup analysis. Our exclusion criteria comprised patients listed for revision arthroplasty surgery.

87 patients were included in this study. Our compliance rate was 15%. The mean difference between a Haemacue test and a formal FBC result was only 17.6g/L suggesting that it has a reasonably high accuracy. With regards to costs, we found that a Haemacue test costs £2, compared to £7.50 for a full blood count and Haematinics combined. This gave an overall cost saving of £5.50 per patient. Extrapolation of this date locally for 2017 at our hospital, where 1575 primary joint arthroplasties were done, a cost saving of £8,662.5 could have been achieved. Within the UK using data extrapolated from the National Joint Registry a total of £1,102,205.5 (1,221,894 Euros) could have been saved.

The use of a single, Haemacue test to screen for pre-operative anaemia in elective arthroplasty patients is more cost effective compared to a formal full count and haematinics tests. However, we found that compliance with the care pathway is variable due to system limitations. This may be addressed through implementing changes to our electronic system in which patients are booked for surgery. We also noted a significant cost reduction if this pathway were to be used Nation-wide. Thus, we encourage other centres to consider the use of the Haemacue test pre-operatively in elective arthroplasty instead of formal full blood counts at the time of decision to treat with arthroplasty; this allows sufficient time for correction of pre-operative anaemia thus improving patient outcomes from arthroplasty.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 48 - 48
1 Mar 2021
AlSaleh K Aldawsari K Alsultan O Awwad W Alrehaili O
Full Access

Posterior spinal surgery is associated with a significant amount of blood loss. The factors predisposing the patient to excessive bleeding-and therefore transfusion- are not well established nor is the effect of transfusion on the outcomes following spinal surgery. We had two goals in this study. First, we were to investigate any suspected risk factors of transfusion in posterior thoraco-lumbar fusion patients. Second, we wanted to observe the negative impact-if one existed- of transfusion on the outcomes of surgery

All adults undergoing posterior thoraco-lumbar spine fusion in our institution from May 2015 to May 2018 were included. Data collected included demographic data as well as BMI, preoperative hemoglobin, American Society of Anesthesiologists classification (ASA), delta Hemoglobin, estimated blood loss, incidence of transfusion, number of units transfused, number of levels fused, length of stay and re-admission within 30 days. The data was analyzed to correlate these variables with the frequency of transfusion and then to assess the association of adverse outcomes with transfusion.

125 patients were included in the study. Only 6 patients (4.8%) required re-admission within the first 30 days after discharge. Length of stay averaged 8.4 days (3–74). 18 patients (14.4%) required transfusion peri-operatively. When multiple variables were analyzed for any correlation, the number of levels fused, age and BMI had statistically significant correlation with the need for transfusion (P <0.005)

Patients undergoing posterior thoraco-lumbar fusion are more likely to require blood transfusion if they were older, over-weight & obese or had a multi-level fusion. Receiving blood transfusion is associated with increased complication rates.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 55 - 55
1 Mar 2021
Dandridge O Garner A van Arkel R Amis A Cobb J
Full Access

Abstract

Objectives

The need for gender specific knee arthroplasty is debated. This research aimed to establish whether gender differences in patellar tendon moment arm (PTMA), a composite measure that characterises function of both the patellofemoral and tibiofemoral joints, are a consequence of knee size or other variation.

Methods

PTMA about the instantaneous helical axis was calculated from positional data acquired using optical tracking. First, data post-processing was optimised, comparing four smoothing techniques (raw, Butterworth filtered, generalised cross-validation cubic spline interpolated and combined filtered/interpolated) using a fabricated knee. Then PTMA was measured during open-chain extension for N=24 (11 female) fresh-frozen cadaveric knees, with physiologically based loading and extension rates (420°/s) applied. Gender differences in PTMA were assessed before and after accounting for knee size with epicondylar width.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 56 - 56
1 Mar 2021
Malik S Hart D Parashin S McRae S Peeler J MacDonald P
Full Access

Abstract

Objectives

ACL graft-suture fixation can be constructed with needle or needleless techniques. Needleless techniques have advantages of decreased injury, preparation time and cost. The Nice Knot (NK) is common among upper extremity procedures; however, its efficacy in ACL reconstruction relative to other needleless methods is not well known. The purpose of this study was to biomechanically compare quadriceps tendon (QT) grafts prepared with the NK versus the modified Prusik Knot (PK).

Methods

Twenty QT grafts were harvested from 10 embalmed human cadaver specimens. 10 were prepared with the PK and 10 with the NK using a No.2 FiberWire (Arthrex, Naples, FL). The prepared grafts were then mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subjected to tensile loading based on an established protocol. Each tendon-suture specimen was preconditioned with 3 cycles of 0–100N at 1Hz followed by a constant load of 50N for 1 minute and cyclic loading of 200 cycles from 50–200N at 1Hz and then loaded to failure at a displacement rate of 20mm/min. Load and displacement data for each tendon-suture construct was recorded by the testing machine.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 38 - 38
1 Mar 2021
Nikolaou V Floros T Sourlas I Pappa E Kaseta M Babis G
Full Access

This study aims to investigate that a single dose of tranexamic acid (TXA) will reduce blood loss and transfusion rates in elderly patients, undergoing intertrochanteric (IT) or femoral neck fractures surgery. Consecutive elderly patients receiving hip fracture surgery for stable or unstable IT fracture, treated with short intramedullary nail (IMN) insertion as well as cemented hemiarthroplasty for acute femoral neck (subcapital) hip fracture, were screened for inclusion in this single-centre randomized trial.

Patients were randomly allocated to a study group by sealed envelope. One TXA dose of 15 mg/kg i.v. diluted in 100 ml N/S or one placebo dose i.v. in 100 ml N/S were administered 5 mins before the skin cut. Haemoglobin (Hb) concentration was measured at admission time and prior to surgery. Post-operatively it was measured on a daily basis until day 4, giving a total of four Hb measurements (days 1 to 4). The transfusion trigger point was determined in accordance with the French guidelines for erythrocyte blood transfusion. The transfusion trigger was 10 g/dl for patients at risk, while in all other cases, it was 9 g/dl. Information regarding the transfusions number was assessed directly by the hospital blood bank database. Blood loss was calculated by the Hb dilution method. Nadler's formula was used to calculate patients' blood volume. For calculation of total blood loss (TBL) expressed to total Hb loss and total Volume loss, the number of transfusions (55 grams of Hb per transfusion), the Hb concentration on preoperatively (Hgbi) and the Hb concentration on the last measure (Hgbe) were used. (Hb balance method).

The primary efficacy outcome was the number of transfusions of allogeneic RBC from surgery up to day 4. The secondary ones were the total blood loss from surgery to day 4 as it was calculated by Hb-balance method. After randomization, 35 patients with femoral neck fracture and 30 patients with IT fracture received TXA prior to surgery. Respectively, 30 patients with femoral neck fracture and 55 with IT fracture didn't receive TXA. The groups did not differ significantly in their basic demographics (age, gender, BMI, injury mechanism, ASA score, co-morbidities). Results showed that patients undergoing hemiarthroplasty after receiving TXA, were transfused with less allogeneic RBC and had less total blood loss than patients that didn't receive TXA, but without statistical significance. While patients treated with IMN in the TXA group received a significantly lower number of RBC units than the control group (1.28 ± 1.049 vs 2.075 ± 1.685), (P = 0.0396), had a significantly lower loss of Hb (98.59 ± 55.24 vs 161.6 ± 141.7), (P = 0.0195) and a lower total blood volume loss (951.3 ± 598.9 ml vs 1513 ± 1247 ml), (P = 0.023).

This trial confirmed TXA administration efficacy in reducing blood loss and transfusion rate in elderly patients undergoing hip fracture surgery. A TXA single dose may be a safer option, taking into account these patients' physiological status and co-morbidities.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 47 - 47
1 Mar 2021
Kabariti R
Full Access

Acute post-operative urinary retention (POUR) is a recognized complication following lower limb arthroplasty. Its occurrence may have patient and ultimately medico-legal implications. Identifying high-risk patients and the associated risk factors pre-operatively, is vital to tackle this issue and reduce its occurrence, which ultimately, may enhance the overall success of our operations. Our aim was to assess the incidence of POUR following elective lower limb arthroplasty and analyze the related factors that could potentially predict the likelihood of developing POUR in our patient cohort. A prospective audit of 158 patients was conducted in our department. POUR was defined as inability to pass urine voluntarily within the first 24 hours following elective lower limb arthroplasty leading to the insertion of a urinary catheter. Surgical-related factors including intra-operative fluid use, type of spinal anesthetic, duration of surgery, time from surgery till insertion of a urinary catheter as well as patient-related factors including medication, urological history and Body Mass index (BMI) was collected and analyzed. 21 (13.3%) patients developed post-operative urinary retention, 11 (52%) and 10 (48%) following knee and hip replacements respectively. Of which, 19 (90.5%) were male and 2 (9.5%) were female with an average age of 66 yrs. 13 (62%) had a previous urological history and 10 (48%) were on retention associated medication. Bupivacaine as a spinal anesthetic was associated with an increased risk of developing post-operative urinary retention. The average time till catheter insertion was 14 hrs. Only 2 (10%) had an unsuccessful TWOC on discharge. Bupivacaine as a spinal anesthetic and a previous urological history can be considered as risk factors for the development of POUR. Pre-operative urinary catheterization should be considered in this high-risk group of patients.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 110 - 110
1 Mar 2021
Pavanram P Li Y Zhou J Kubo Y Lietaert K Leeflang M Fockaert L Pouran B Mol J Weinans H Zadpoor A Jahr H
Full Access

As compared to magnesium (Mg) and iron (Fe), solid zinc (Zn)-based absorbable implants show better degradation rates. An ideal bone substitute should provide sufficient mechanical support, but pure Zn itself is not strong enough for load-bearing medical applications. Modern processing techniques, like additive manufacturing (AM), can improve mechanical strength of Zn. To better mimic the in vivo situation in the human body, we evaluated the degradation behavior of porous Zn implants in vitro under dynamic conditions. Our study applied selective laser melting (SLM) to build topographically ordered absorbable Zn implants with superior mechanical properties. Specimens were fabricated from pure Zn powder using SLM and diamond unit cell topological design. In vitro degradation was performed under both static and dynamic conditions in a custom-built set-up under cell culture conditions (37 °C, 20% O2 and 5% CO2) for up to 28 days. Mechanical properties of the porous structures were determined according to ISO 13314: 2011 at different immersion time points. Modified ISO 10993 standards were used to evaluate biocompatibility through direct cell seeding and indirect extract-based cytotoxicity tests (MTS assay, Promega) against identically designed porous titanium (Ti-6Al-4V) specimens as reference material. Twenty-four hours after cell seeding, its efficacy was evaluated by Live-Dead staining (Abcam) and further analyzed using dual channel fluorescent optical imaging (FOI) and subsequent flow cytometric quantification. Porous Zn implants were successfully produced by means of SLM with a yield strength and Young's modulus in the range of 3.9–9.6 MPa and 265–570 MPa, respectively. Dynamic flow significantly increased the degradation rate of AM porous Zn after 28 days. Results from Zn extracts were similar to Ti-6Al-4V with >95% of cellular activity at all tested time points, confirming level 0 cytotoxicity (i.e., This study clearly shows the great potential of AM porous Zn as a bone substituting material. Moreover, we demonstrate that complex topological design permits control of mechanical properties and degradation behavior.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 18 - 18
1 Mar 2021
Babel H Omoumi P Jolles B Favre J
Full Access

While knee osteoarthritis (OA) is now recognized as a complex disease affecting the whole joint, not just the cartilages, there remains a paucity of data regarding the interactions between knee components. One relationship of particular interest is between the spatial variations in cartilage thickness (CTh) and subchondral bone mineral density (BMD). Indeed, bone and cartilage are two mechanosensitive tissues that interact as a functional unit and there is evidence of a biomechanical coupling between both tissues. Particularly, a recent in vivo study has shown a positive relationship in non-OA knees with thicker cartilage where bone is denser, and an alteration of this relationship in OA knees. These observations support the concept of an osteochondral unit and warrant additional research to assess the influence of bone depth. Therefore, this study aimed to characterize the relationship between spatial variations in CTh and BMD measured at various depths below the bone surface.

CT-arthrography of 20 non-OA tibias and 20 severe medial-compartment OA tibias were segmented to build 3D mesh models of the bones and cartilages. Each individual tibia model was registered to a reference tibia, allowing to calculate BMD maps at 1, 3, 5 and 10mm below the bone-cartilage interface in the medial compartment. Pearson correlations between CTh maps and the four BMD maps were then calculated for each knee. Lastly, differences in correlation coefficients between successive bone layers were assessed using Wilcoxon signed-rank tests.

In both OA and non-OA tibias, the correlation coefficients were higher with the BMD measured in the 1mm layer, and followed a pattern of statistically significant decrease with bone layers of increasing depth (p < 0.021). In non-OA tibias, the median relationship was positive with a strong effect size in the 1, 3 and 5mm layers, while in OA tibias the median relationship was positive only in the 1mm layer and with a medium effect size. In the OA tibias, the median relationship was negative with a weak effect size in the 3 and 5mm layers, and it was negative with a medium effect size in the 10mm layer.

In conclusion, the results of the present study support the value of considering bone and cartilage as a unit, and more generally support OA pathophysiology models based on relationships among knee properties.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 113 - 113
1 Mar 2021
George A Ellis M Gill R
Full Access

Hypoxic Inducible Factor and Hypoxic mimicking agents (HMA) trigger the initiation and promotion of angiogenic-osteogenic cascade events. However, there has been paucity of studies investigating how HIF could be over expressed under chronic hypoxic conditions akin to that seen in sickle cell disease patients to help form a template for tackling the matter of macrocellular avascular necrosis. Angiogenesis and osteogenesis are tightly coupled during bone development and regeneration, and the hypoxia-inducible factor-1 alpha (HIF-1) pathway has been identified as a key component in this process studies have shown. There are still no established experimental models showing how this knowledge can be used for the evaluation of bone implant integration and suggest ways of improving osseointegration in sickle cell disease patients with hip arthroplasty and thereby prevent increased implant loosening. The aim of this study is to help develop an in vitro experimental model which would mimic the in vivo pathologic state in the bone marrow of sickle cell disease patients. It also seeks to establish if the hypoxic inducible factor (HIF) could be over expressed in vitro and thus enhancing osseointegration. MG63 osteoblastic cells were cultured under normoxia and hypoxic conditions (20%; and 1% oxygen saturation) for 48 and 72 hours. Cobalt chloride was introduced to the samples in order to mimic true hypoxia. Cells cultured under normoxic conditions and without cobalt chloride was used as the control in this study. The expression of the hypoxic inducible factor was assessed using the reverse transcriptase qualitative polymerase chain reaction (RT-qPCR). There was increased expression of HIF1-alpha at 72hours as compared to 48hours under the various conditions. The level of expression of HIF increased from 48hrs (mean rank= 4.60) to 72hrs (mean rank =5.60) but this difference was not statistically significant, X2(1) = 0.24, p =0.625. The mean rank fold change of HIF in hypoxic samples decreased compared to the normoxic samples but this difference was not statistically significant, X2(1) = 0.54, p= 0.462. Therefore, the expression of HIF is only increased with prolonged hypoxia as seen in the 72hours samples. The expression of HIF increased in samples with CoCl2 (mean rank=5.17), compared with samples without CoCl2 (mean rank 4.67), however this was not statistically significant, X2(1) = 0.067, p=0.796, p value > 0.05. The over expression of HIF was achieved within a few days (72hours) with the introduction of Cobalt Chloride, which is a mimetic for hypoxia similar to the in vivo environment in sickle cell disease patients. This is an in vitro model which could help investigate osseointergation in such pathologic bone conditions.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 114 - 114
1 Mar 2021
Zwerus E
Full Access

Driven by increasing emphasis on problem-based and self-directed learning, medical students and doctors in orthopedic specialty training rely increasingly on the internet as learning resource. As students or residents performance on physical examination may be less supervised in comparison to other clinical skills (for example surgical competence), online videos may provide a valuable source for education of physical examination skills. Cognitive psychological research has shown that videos can help viewers to understand techniques and manage the sequential steps of physical examination and approach to patients. YouTube is the largest open-access video platform available and provides access to thousands of educational videos on orthopedics-related topics. VuMedi, G9MD, and Orthobullets are examples of online platforms requiring user-registration with video content that is more directly focused on orthopedic topics. The objective of this study was to investigate the accuracy and quality of instructional videos on the physical examination of the elbow and identify factors influencing the educational usefulness.

A YouTube, VuMedi, Orthobullets, and G9MD search was performed on October 7, 2018 for videos on the physical examination of the elbow. We included both basic examination and disease specific tests. The included videos were rated for accuracy and quality by two independent authors using a modified version of a validated scoring system. Inter-rater reliability was analyzed using mean difference and intra-class correlation coefficient.

Twenty-three out of 126 videos were indicated as useful for educational purposes. Accuracy, quality and total scores were statistically significant higher for videos from specialized platforms compared to YouTube: 16.5 (95% CI 16 to 17) vs. 12.816 (95% CI 12.3 to 13.3) respectively. Video accuracy and quality were highly variable and did not correlate. The number of days online, views, and likes showed no or weak correlation with accuracy and quality. For the total score, our assessment tool showed excellent inter-rater reliability of 0.93 (95% CI 0.09–0.95) and a mean difference of 0.024 point between the two observers (p=0.871).

There is considerable variation in accuracy and quality of online available videos on the physical examination of the elbow. We indicated 23 educationally useful videos and provided an assessment method. This assessment method can be useful for both viewers to assess reliability of a video and educators interested in creating videos.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 21 - 21
1 Mar 2021
Seidel M Busso N Hügle T Geurts J
Full Access

Recent clinical studies on targeting nerve growth factor (NGF) in chronic low back pain and knee osteoarthritis have demonstrated efficient pain reduction in a short-term treatment regimen. However, the increased risk for the development of rapid progressive osteoarthritis at the required high drug dose remains a serious concern and prompts thorough analysis of the tissue distribution and role of NGF in degenerative musculoskeletal disorders. Here, we sought to investigate tissue distribution of NGF, its high affinity receptor TrkA and CD68-positive macrophages in human facet joint osteoarthritis of the lumbar spine.

Facet joint specimens (n=10) were harvested by facetectomy from patients undergoing elective lumbar intervertebral spine fusion. Facet joint osteoarthritis and presence of synovitis was graded using preoperative magnetic resonance imaging. Tissue distribution of NGF, TrkA and CD68 was determined using immunohistochemistry. Tissue degradation was graded on safranin-O-stained tissue sections. Association between imaging parameters and tissue distribution was determined using Pearson correlation analysis.

Synovitis was present in 6 cases and facet joints displayed moderate to severe radiological osteoarthritis (median Weishaupt grade; 2 [1.5–3]). NGF was expressed in 8 of 10 specimens. NGF was expressed in connective tissue, articular and fibrocartilage, but not bone tissue. Cartilaginous NGF expression was predominantly found in the extracellular matrix of superficial cartilage tissue with complete loss of proteoglycans, chondrocyte death and structural damage (fissures). Loss of cartilage proteoglycan staining alone did not display NGF immunoreactivitiy. NGF expression was not correlated with radiological osteoarthritis severity or presence of synovitis. NGF high affinity receptor TrkA was exclusively expressed in bone marrow tissues. Differential grades of bone marrow infiltration by CD68-positive macrophages were observed, yet these were not associated with NGF expression.

Targeting NGF in chronic low back pain and/or facet joint osteoarthritis might affect pathomechanisms in cartilaginous tissues and NGF signalling in the bone marrow compartment.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 117 - 117
1 Mar 2021
van Vijven M Kimenai J van Groningen B van der Steen M Janssen R Ito K Foolen J
Full Access

After anterior cruciate ligament (ACL) rupture, reconstructive surgery with a hamstring tendon autograft is often performed. Despite overall good results, ACL re-rupture occurs in up to 10% of the patient population, increasing to 30% of the cases for patients aged under 20 years. This can be related to tissue remodelling in the first months to years after surgery, which compromises the graft's mechanical strength. Resident graft fibroblasts secrete matrix metalloproteinases (MMPs), which break down the collagen I extracellular matrix. After necrosis of these fibroblasts, myofibroblasts repopulate the graft, and deposit more collagen III rather than collagen I. Eventually, the cellular and matrix properties converge towards those of the native ACL, but full restoration of the ACL properties is not achieved. It is unknown how inter-patient differences in tissue remodelling capacity contribute to ACL graft rupture risk. This research measured patient-specific tissue remodelling-related properties of human hamstring tendon-derived cells in an in vitro micro-tissue platform, in order to identify potential biological predictors for graft rupture.

Human hamstring tendon-derived cells were obtained from remnant autograft tissue after ACL reconstructions. These cells were seeded in collagen I gels on a micro-tissue platform to assess inter-patient cellular differences in tissue remodelling capacity. Remodelling was induced by removing the outermost micro-posts, and micro-tissue compaction over time was assessed using transmitted light microscopy. Protein expression of tendon marker tenomodulin and myofibroblast marker α-smooth muscle actin (αSMA) were measured using Western blot. Expression and activity of remodelling marker MMP2 were determined using gelatin zymography.

Cells were obtained from 12 patients (aged 12–51 years). Patient-specific variations in micro-tissue compaction speed or magnitude were observed. Up to 50-fold differences in αSMA expression were found between patients, although these did not correlate with faster or stronger compaction. Surprisingly, tenomodulin was only detected in samples obtained from two patients. Total MMP2 expression varied between patients, but no large differences in active fractions were found. No correlation of patient age with any of the remodelling-related factors was detected.

Remodelling-related biological differences between patient tendon-derived cells could be assessed with the presented micro-tissue platform, and did not correlate with age. This demonstrates the need to compare this biological variation in vitro - especially cells with extreme properties - to clinical outcome. Sample size is currently increased, and patient outcome will be determined. Combined with results obtained from the in vitro platform, this could lead to a predictive tool to identify patients at risk for graft rupture.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 120 - 120
1 Mar 2021
Grammens J Peeters W Van Haver A Verdonk P
Full Access

Trochlear dysplasia is a specific morphotype of the knee, characterized by but not limited to a specific anatomy of the trochlea. The notch, posterior femur and tibial plateau also seem to be involved. In our study we conducted a semi-automated landmark-based 3D analysis on the distal femur, tibial plateau and patella.

The knee morphology of a study population (n=20), diagnosed with trochlear dysplasia and a history of recurrent patellar dislocation was compared to a gender- and age-matched control group (n=20). The arthro-CT scan-based 3D-models were isotropically scaled and landmark-based reference planes were created for quantification of the morphometry. Statistical analysis was performed to detect shape differences between the femur, tibia and patella as individual bone models (Mann-Whitney U test) and to detect differences in size agreement between femur and tibia (Pearson's correlation test).

The size of the femur did not differ significantly between the two groups, but the maximum size difference (scaling factor) over all cases was 35%. Significant differences were observed in the trochlear dysplasia (TD) versus control group for all conventional parameters. Morphometrical measurements showed also significant differences in the three directions (anteroposterior (AP), mediolateral (ML), proximodistal (PD)) for the distal femur, tibia and patella. Correlation tests between the width of the distal femur and the tibial plateau revealed that TD knees show less agreement between femur and tibia than the control knees; this was observed for the overall width (TD: r=0.172; p=0.494 - control group: r=0.636; p=0.003) and the medial compartment (TD: r=0.164; p=0.516 - control group: r=0.679; p=0.001), but not for the lateral compartment (TD: r=0.512; p=0.029 - control: r=0.683; p=0.001). In both groups the intercondylar eminence width was strongly correlated with the notch width (TD: r=0.791; p=0.001 - control: r=0.643; p=0.002).

The morphology of the trochleodysplastic knee differs significantly from the normal knee by means of an increased ratio of AP/ML width for both femur and tibia, a smaller femoral notch and a lack of correspondence in mediolateral width between the femur and tibia. More specifically, the medial femoral condyle shows no correlation with the medial tibial plateau.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 28 - 28
1 Mar 2021
Amado I Mathavan N Cavanagh B Murphy C Kennedy O
Full Access

Osteoarthritis (OA) is a disease that affects both bone and cartilage. Typically, this disease leads to cartilage degradation and subchondral bone sclerosis but the link between the two is unknown. Also, while OA was traditionally thought of as non-inflammatory condition, it now seems that low levels of inflammation may be involved in the link between these responses. This is particularly relevant in the case of Post-Traumatic OA (PTOA), where an initial phase of synovial inflammation occurs after injury. The inflammatory mediator interleukin 1 beta (IL-1B) is central to this response and contributes to cartilage degradation. However, whether there is a secondary effect of this mediator on subchondral bone, via bone-cartilage crosstalk, is not known. To address this question, we developed a novel patellar explant model, to study bone cartilage crosstalk which may be more suitable than commonly used femoral head explants. The specific aim of this study was to validate this novel patellar explant model by using IL-1B to stimulate the inflammatory response after joint injury and the subsequent development of PTOA.

Female Sprague Dawley rats (n=48) were used to obtain patellar explants, under an institutional ethical approval license. Patellae were maintained in high glucose media, under sterile culture conditions, with or without IL-1B (10ng/ml), for 7 days. Contralateral patellae served as controls. One group (n= 12) of patellae were assessed for active metabolism, using two both Live and Dead (L/D) staining and an Alamar Blue assay (AB). A second group (n=12) was used for tissue specific biochemical assays for both bone (Alkaline Phosphatase) and cartilage (sulfated proteoglycan and glycosaminoglycan (sGaG)). Finally, a third group (n=28) of explants were used for histologically analysis. Samples were decalcified, embedded in paraffin and sectioned to 7µm thickness, and then stained using H&E; and Safranin O with fast green. Additionally, toluidine blue and alkaline phosphatase staining were also performed.

Our results demonstrate that our system can maintain good explant viability for at least 7 days, but that IL-1B reduces cell viability in patellar cartilage, as measured by both L/D and AB assays after 0, 2, 4 and 7 days in culture. In contrast, sGaG content in cartilage were increased by this treatment. Additionally, ALP, a marker of osteoblastic activity, was increased in IL-1B treated group 4 and 7 days, but was also showed some increase in control groups. Histological analyses showed that IL-1B treatment resulted in reduced proteoglycan staining, demonstrating the powerful effect of this factor in injury response over time.

Thus, we conclude that IL-1B affects both bone and cartilage tissues independently in this system, which may have relevance in understanding bone-cartilage crosstalk after injury and how this is involved in PTOA development.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 79 - 79
1 Mar 2021
Doodkorte R Roth A van Rietbergen B Arts J Lataster L van Rhijn L Willems P
Full Access

Complications after spinal fusion surgery are common, with implant loosening occurring in up to 50% of osteoporotic patients. Pedicle screw fixation strength reduces as a result of decreased trabecular bone density, whereas sublaminar wiring is less affected by these changes. Therefore, pedicle screw augmentation with radiopaque sublaminar wires (made with Dyneema Purity® Radiapque fibers, DSM Biomedical, Geleen, the Netherlands) may improve fixation strength. Furthermore, sublaminar tape could result in a gradual motion transition to distribute stress over multiple levels and thereby reduce implant loosening. The objective of this study is to test this hypothesis in a novel experimental setup in which a cantilever bending moment is applied to individual human vertebrae.

Thirty-eight human cadaver vertebrae were stratified into four different groups: ultra-high molecular weight polyethylene sublaminar tape (ST), pedicle screw (PS), metal sublaminar wire (SW) and pedicle screw reinforced with sublaminar tape (PS+ST). The vertebrae were individually embedded in resin, and a cantilever bending moment was applied bilaterally through the spinal rods using a universal material testing machine. This cantilever bending setup closely resembles the loading of fixators at transitional levels of spinal instrumentation.

The pull-out strength of the ST (3563 ± 476N) was not significantly different compared to PS, SW or PS+ST. The PS+ST group had a significantly higher pull-out strength (4522 ± 826N) compared to PS (2678 ± 292N) as well as SW (2931 ± 250N).

The higher failure strength of PS + ST compared to PS indicates that PS augmentation with ST may be an effective measure to reduce the incidence of screw pullout, even in osteoporotic vertebrae. Moreover, the lower stiffness of sublaminar fixation techniques and the absence of damage to the cortices in the ST group suggest that ST as a stand-alone fixation technique in adult spinal deformity surgery may also be clinically feasible and offer clinical benefits.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 91 - 91
1 Mar 2021
Elnaggar M Riaz O Patel B Siddiqui A
Full Access

Abstract

Objectives

Identifying risk factors for inferior outcomes after anterior cruciate ligament reconstruction (ACLR) is important for prognosis and patient information. This study aimed to ascertain if BMI, pre-operative scores, demographic data and concomitant injuries in patients undergoing ACLR affected patient-reported functional outcomes.

Methods

A prospective review collected data from a single surgeon series of 278 patients who underwent arthroscopic ACLR. BMI, age, gender, graft choice, pre-op Lysholm score, meniscal and chondral injuries were recorded. The Lysholm score, hop test and KT1000 were used to measure post-op functional outcome at one year. Multiple regression analysis was used to determine factors that predicted Lysholm scores at one year.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 94 - 94
1 Mar 2021
Harrison A
Full Access

Abstract

Objectives

Review the evidence of low intensity pulsed ultrasound (LIPUS) for fracture non-union treatment and the potential to treat fractures in patients with co-morbidities at risk of fracture non-union.

Methods

Data was gathered from both animal and human studies of fracture repair to provide an overview of the LIPUS in bone healing applications to provide in-depth evidence to substantiate the use in treatment of non-union fractures and to propose a scientific rational to develop a clinical development programme.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 87 - 87
1 Mar 2021
Graceffa V Govaerts A Lories R Jonkers I
Full Access

In a healthy joint, mechanical loading increases matrix synthesis and maintains cell phenotype, while reducing catabolic activities. It activates several pathways, most of them yet largely unknown, with integrins, TGF-β, canonical (Erk 1/2) and stress-activated (JNK) MAPK playing a key role. Degenerative joint diseases are characterized by Wnt upregulation and by the presence of proteolytic fibronectin fragments (FB-fs). Despite they are known to impair some of the aforementioned pathways, little is known on their modulatory effect on cartilage mechanoresponsiveness. This study aims at investigating the effect of mechanical loading in healthy and in vitro diseased cartilage models using pro-hypertrophic Wnt agonist CHIR99021 and the pro-catabolic FB-fs 30 kDa.

Human primary chondrocytes from OA patients have been grown in alginate hydrogels for one week, prior to be incubated for 4 days with 3μM CHIR99021 or 1 μM FB-fs. Human cartilage explants isolated from OA patients have incubated 4 days with 3 μM CHIR99021 or 1 μM FB-fs. Both groups have then been mechanically stimulated (unconfined compression, 10% displacement, 1.5 hours, 1 Hz), using a BioDynamic bioreactor 5270 from TA Instruments. Expression of collagen type I, II and X, aggrecan, ALK-1, ALK-5, αV, α5 and β1 integrins, TGF-β1 have been assessed by Real Time-PCR and normalized with the expression of S29. Percentage of phosphorylated Smad2, Smad1 and JNK were determined through western blot. TGF-β1 content was quantified by sandwich ELISA; MMP-13 and GAG by western blot and DMMB assay, respectively. At least three biological replicates were used. ANOVA test was used for parametric analysis; Kruskal-Wallis and Mann-Whitney post hoc test for non-parametric.

Preliminary data show that compression increased collagen II expression in control, but not in CHIR99021 and FB-fs pre-treated group (Fig. 1A-B). This was associated with downregulation of β1-integrin expression, which is the main collagen receptor and further regulates collagen II expression, suggesting inhibition of Erk1/2 pathway. A trend of increase expression of collagen type X after mechanical loading was observed in CHIR and FB-fs group. ALK-1 and ALK-5 showed a trend toward stronger upregulation in CHIR99021 group after compression, suggesting the activation of both Smad1/5/8 and Smad 2/3 pathways. To further investigate pathways leading to these different mechano-responses, the phosphorylation levels of Smad1 and Smad2, Erk1/2 and JNK proteins are currently being studied. Preliminary results show that Smad2, Smad1 and JNK protein levels increased in all groups after mechanical loading, independently of an increase in TGF-β1 expression or content. Compression further increased phosphorylation of Smad2, but not of Smad1, in all groups.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 100 - 100
1 Mar 2021
Walton T Hughes K Maripuri S Crompton T
Full Access

Abstract

Objectives

The purpose of this study was to determine the cost of inpatient admissions for developmental dysplasia of the hip (DDH) at a UK tertiary referral centre, and identify any association between newborn screening (NIPE) status and the cost of treatment.

Methods

This was a retrospective study, using hospital episodes data from a single NHS trust. All inpatient episodes between 01/01/2014 to 30/06/2019 with an ICD-10 code stem of Q65 ‘congenital deformities of hip’ were screened to identify admissions for management of DDH. Data was subsequently obtained from electronic and paper records. Newborn screening status was recorded, and patients were divided into ‘NIPE-positive’ (diagnosed through selective screening) and ‘NIPE-negative’ (not diagnosed through screening). Children with neuromuscular conditions or concomitant musculoskeletal disease were excluded. The tariff paid for each inpatient episode was identified, and the number of individual clinic attendances, surgical procedures and radiological examinations performed (USS, XR, CT, MRI) were recorded.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 88 - 88
1 Mar 2021
Elahi SA Fehervary H Famaey N Jonkers I
Full Access

To unravel the relation between mechanical loading and biological response, cell-seeded hydrogel constructs can be used in bioreactors under multi-axial loading conditions that combines compressive with torsional loading. Typically, considerable biological variation is observed. This study explores the potential confounding role of mechanical factors in multi-directional loading experiments. Indeed, depending on the material properties of the constructs and characteristics of the mechanical loading, the mechanical environment within the constructs may vary. Consequently, the local biological response may vary from chondrogenesis in some parts to proteoglycan loss in others.

This study uses the finite element method to investigate the effects of material properties of cell-seeded constructs and multiaxial loading characteristics on local mechanical environment (stresses and strains) and relate these to chondrogenesis (based on maximum compressive principal strain (MCPS) - Zahedmanesh et al., 2014) and proteoglycan loss (based on fluid velocity (FV) - Orozco et al., 2018).

The construct was modelled as a homogenized poro-hyperelastic (using a Neohookean model and Darcys law) cylinder of 8mm diameter and equal height using Abaqus. The bottom surface was fully constrained and dynamic unconfined compression and torsion loading were applied to the top surface. Free fluid flow was allowed through the lateral surface. We studied the sensitivity of the maximum values of the target parameters at 9 key locations to the material parameters and loading characteristics. Six input parameters were varied in preselected ranges: elastic modulus (E=[20,80]kPa), Poissons ratio (nu=[0.1,0.4]), permeability (k=[1,4]e-12m4/Ns), compressive strain (Comp=[5,20]%), rotation (Rot=[5,20]°) and loading frequency (Freq=[1,4]Hz). A full-factorial design of experiment method was used and a first-order polynomial surface including the interactions fitted the responses.

MCPS varies between 7.34% and 33.52% and is independent of the material properties (E, nu and k) and Freq but has a high dependency on Comp and a limited dependency on Rot. The maximum value occurs centrally in the construct, except for high values of Rot and low Comp where it occurs at the edges. FV vary between 0.0013mm/sec and 0.1807mm/sec and dominantly depends on E, k and Comp, while its dependency on Rot and Freq is limited. The maximum value usually occurs at the edges, although at high Freq it may move towards the center of the superficial and deep zones. This study can be used as a guideline for the optimized selection of mechanical parameters of hydrogel for cell-seeded constructs and loading conditions in multi-axial bioreactor studies. In future work, we will study the effect in intact and injured cartilage explants.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 101 - 101
1 Mar 2021
Tantowi NACA Cheneler D McLauchlan G Kerns JG
Full Access

Abstract

Objectives

Osteoarthritis (OA) of the knee causes pain, limits activity and impairs quality of life. Raman microspectroscopy can provide information about the chemical changes that occur in OA, to enhance our understanding of its pathology. The objective of this study is to detect OA severity in human cartilage and subchondral bone using Raman microspectroscopy and explore corresponding mechanical properties of the subchondral bone.

Methods

OA tibial plateaus were obtained from total knee replacement surgery with REC (18/LO/1129) and HRA approval. Medial tibial plateau, representing a major weight-bearing area, was graded according to the International Cartilage Repair Society (ICRS) scoring system. Nine samples (3 samples of each graded as moderate, severe and very severe) were selected for Raman and mechanical analyses.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 102 - 102
1 Mar 2021
Kohli N De Eguilior Caballero JR Ghouse S Van Arkel R
Full Access

Abstract

Introduction

The long-term biological success of cementless orthopaedic prostheses is highly dependent on osteointegration. Pre-clinical testing of new cementless implant technology however, requires live animal testing, which has anatomical, loading, ethical and cost challenges. This proof-of-concept study aimed to develop an in vitro model to examine implant osteointegration under known loading/micromotion conditions.

Methods

Fresh cancellous bone cylinders (n=8) were harvested from porcine femur and implanted with additive manufactured porous titanium implants (Ø4 × 15 mm). To simulate physiological conditions, n=3 bone cylinders were tested in a bioreactor system with a cyclic 30 µm displacement at 1Hz for 300 cycles every day for 15 days in a total of 21 days culture. The chamber was also perfused with culture medium using a peristaltic pump. Control bone cylinders were cultured under static conditions (n=5). Samples were calcein stained at day 7. Post-testing, bone cylinders were formalin fixed and bony ingrowth was measured via microscopy.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 91 - 91
1 Mar 2021
Martin R Critchley R Anjum S
Full Access

Neck of femur fractures are a common presentation and certain patients can be managed with a total hip replacement. To receive a total hip replacement the pelvic X-rays should be templated as per AO guidelines and a common way this is performed is by including a calibration marker on the X-ray. The aim of this study is to assess and improve upon the use of the calibration marker.

Details of patients admitted with a neck of femur fracture from January 1st 2018 until December 31st 2018 were gathered and used to review each initial X-ray and determine if a calibration marker was included. 376 patients were admitted with a neck of femur fracture over the one year period. 36% of patients did not have a calibration marker on their initial pelvic X-ray and 11% did not have a chest X ray. 215 patients had an intracapsular fracture and 39 went on to have a total hip replacement. 12 patients were lacking a calibration marker on their original X ray and required a repeat X ray. After a poster was placed in the radiographer booth acting as a visual aid, the use of a calibration marker improved from 62% to 70%.

Calibration markers are useful tools which can aid the pre-operative planning for hip replacement surgeries shortening operative time, increase precision and reduce prosthetic loosening, lowers the risk of peri-prosthetic fractures, reduce leg length discrepancy and ensure the required implants are available. If a marker is not included on the initial X-rays, and a patient has a neck of femur fracture which requires a joint replacement, they may have to have additional X-rays performed as was the case for 12 patients in this study. This process leads to possible delays in surgery, additional radiation and increased healthcare costs.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 52 - 52
1 Mar 2021
Harris A O'Grady C Sensiba P Vandenneucker H Huang B Cates H Christen B Hur J Marra D Malcorps J Kopjar B
Full Access

Patients ≤ 55 years have a high primary TKA revision rate compared to patients >55 years. Guided motion knee devices are commonly used in younger patients yet outcomes remain unknown. In this sub-group analysis of a large multicenter study, 254 TKAs with a second-generation guided motion knee implant were performed between 2011–2017 in 202 patients ≤ 55 years at seven US and three European sites. Revision rates were compared with Australian Joint Registry (AOANJRR) 2017 data. Average age 49.7 (range 18–54); 56.4% females; average BMI 34 kg/m2; 67.1% obese; patellae resurfaced in 98.4%. Average follow-up 4.2 years; longest follow-up six years; 27.5% followed-up for ≥ five years. Of eight revisions: total revision (one), tibial plate replacements (three), tibial insert exchanges (four). One tibial plate revision re-revised to total revision. Revision indications were mechanical loosening (n=2), infection (n=3), peri-prosthetic fracture (n=1), and instability (n=2). The Kaplan-Meier revision estimate was 3.4% (95% C.I. 1.7% to 6.7%) at five years compared to AOANJRR rate of 6.9%. There was no differential risk by sex. The revision rate of the second-generation guided motion knee system is lower in younger patients compared to registry controls.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 61 - 61
1 Mar 2021
Kayode O Day G Mengoni M Conaghan P Wilcox R
Full Access

Abstract

Introduction

Osteoarthritis (OA) affects more than four million people in the UK alone. Bone marrow lesions (BMLs) are a common feature of subchondral bone pathology in OA. Both bone volume fraction and mineral density within the BML are abnormal. The aim of this study was to investigate the effect of a potential treatment (bone augmentation) for BMLs on the knee joint mechanics in cases with healthy and fully degenerated cartilage, using finite element (FE) models of the joint to study the effect of BML size.

Methods

FE models of a human tibiofemoral joint were created based on models from the Open Knee project (simtk.org). Following initial mesh convergence studies, each model was manipulated in ScanIP (Synopsys-Simpleware, UK) to incorporate a BML 2mm below the surface of the tibial contact region. Models representing extreme cases (healthy cartilage, no cartilage; BML region as an empty cavity or filled with bone substitution material (200GPa)) were generated, each with different sizes of BML. Models were tested under a representative physiological load of 2kN.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 62 - 62
1 Mar 2021
Talbott H Wilkins R Cooper R Redmond A Brockett C Mengoni M
Full Access

Abstract

OBJECTIVE

Flattening of the talar dome is observed clinically in haemarthropathy as structural and functional changes advance but has not been quantified yet. In order to confirm clinical observation, and assess the degree of change, morphological measurements were derived from MR images.

METHODS

Four measurements were taken, using ImageJ (1.52v), from sagittal MRI projections at three locations – medial, lateral and central: Trochlear Tali Arc Length (TaAL), Talar Height (TaH), Trochlear Tali Length (TaL), and Trochlear Tali Radius (TaR). These measurements were used to generate three ratios of interest: TaR:TaAL, TaAL:TaL, and TaL:TaH. With the hypothesis of a flattening of the talar dome with haemarthropathy, it was expected that TaR:TaAL and TaL:TaH should be greater for haemophilic ankles, and TaAL:TaL should be smaller. A total of 126 MR images (ethics: MEEC 18–022) were included to assess the difference in those ratios between non-diseased ankles (33 images from 11 volunteers) and haemophilic ankles (93 images from 8 patients’ ankles). Non-diseased control measurements were compared to literature to assess the capacity of doing measurements on MRI instead of radiographs or CT.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 60 - 60
1 Mar 2021
Aldawsari K Alotaibi MT AlSaleh K
Full Access

Spondylolisthesis is common recognized spine pathology. A lot of studies targeted spondylolisthesis in the recent years, few of which have made a major influential impact on the clinical practice. To the extent our knowledge this is the first study to highlight and analyze the top 100 cited articles on spondylolisthesis through a systematic search strategy used previously in published studies in different medical specialty. The aim of this study is to identify the most cited studies on spondylolisthesis and report their impact in spine field.

Thomson Reuters Web of Science-Science Citation Index Expanded was searched using title-specific search “spondylolisthesis”. All studies published in English language between 1900 and 2019 were included with no restrictions. The top 100 cited articles were identified using “Times cited” arranging articles from high to low according to citation count. Further analysis was made to obtain the following items: Article title, author's name and specialty, country of origin, institution, journal of publication, year of publication, citations number, study design.

The citation count of the top 100 articles ranged from 69 to 584. All published between 1950 – 2016. Among 20 journals, Spine had the highest number of articles 47, with citation number of 5964 out of 13644. Second ranked was Journal of Bone and Joint Surgery with 16 articles and a total citation of 3187. In respect to the primary author's specialty, Orthopedic surgeons contributed to the majority of top 100 list with 82 articles, Neurosurgery was the second specialty with 10 articles. United states had produced more than half of the list by 59 articles. England was the second country with 7 articles. Surgical management of lumbar spondylolisthesis was the most common discussed topic.

This article identifies the top 100 influential papers on spondylolisthesis and recognizes an important aspect of knowledge evolution served by leading researchers as they guide today's clinical decision making in spondylolisthesis.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 4 - 4
1 Mar 2021
Bragonzoni L Cardinale U Bontempi M Di Paolo S Zinno R Alesi D Muccioli G Pizza N Di Sarsina T Agostinone P Zaffagnini S
Full Access

Physiological kinematics is very difficult to restore after total knee arthroplasty (TKA). A new model of medial stabilized (MS) TKA prosthesis has a high spherical congruence of the internal compartment, which guarantees anteroposterior (AP) stability associated with a flat surface of the insert in the lateral compartment, that allows a greater AP translation of the external condyle during knee flexion. The aim of our study is to evaluate, by dynamic radiostereometric analysis (RSA), the knee in vivo kinematics after the implantation of a MS prosthesis during sit to stand and lunge movements. To describe the in vivo kinematics of the knee after MS Fixed Bearing TKA (GMK Sphere (TM) Medacta International AG, Castel San Pietro, Switzerland) using Model Based dynamic RSA.

A cohort of 18 patients (72.1 ± 7.4 years old) was evaluated by dynamic RSA 9 months after TKA. The kinematic evaluation was carried out using the dynamic RSA tool (BI-STAND DRX 2), developed at our Institute, during the execution of sit to stand and lunge movements. The kinematic data were processed using the Grood and Suntay decomposition and the Low Point method. The patients performed two motor tasks: a sit-to-stand and a lunge. Data were related to the flexion angle versus internal-external, varus-valgus rotations and antero-posterior translations of the femur with respect to the tibia.

During the sit to stand, the kinematic analysis showed the presence of a medial pivot, with a significantly greater (p=0.0216) anterior translation of the lateral condyle (3.9 ± 0.8 mm) than the medial one (1.6 ± 0.8 mm) associated with a femoral internal rotation (4.5 ± 0.9 deg). During the lunge, in the flexion phase, the lateral condyle showed a larger posterior translation than the medial one (6.2 ± 0.8 mm vs 5.3 ± 0.8 mm) associated with a femoral external rotation (3.1 ± 0.9 deg). In the extension phase, there is a larger anterior translation of the lateral condyle than the medial one (5.8 ± 0.8 mm vs 4.6 ± 0.8 mm) associated with femoral internal rotation (6.2 ± 0.9 deg). Analysing individual kinematics, we also found a negative correlation between clinical scores and VV laxity during sit to stand (R= −0.61) and that the higher femoral extra-rotation, the poorer clinical scores (R= 0.65).

The finding of outliers in the VV and IE rotations analysis highlights the importance of a correct soft tissue balancing in order to allow the prosthetic design to manifest its innovative features.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 12 - 12
1 Mar 2021
Ahrend M Noser H Shanmugam R Kamer L Burr F Hügli H Zaman TK Richards G Gueorguiev B
Full Access

Artificial bone models (ABMs) are commonly used in traumatology and orthopedics for training, education, research and development purposes. The aim of this study was to develop the first evidence-based generic Asian pelvic bone model and compare it to an existing pelvic model.

A hundred clinical CT scans of intact adult pelvises (54.8±16.4 years, 161.3±8.3 cm) were acquired. They represented evenly distributed female and male patients of Malay (n=33), Chinese (n=34) and Indian (n=33) descent. The CTs were segmented and defined landmarks were placed. By this means, 100 individual three-dimensional models were calculated using thin plate spline transformation. Following, three statistical mean pelvic models (male, female, unisex) were generated. Anatomical variations were analyzed using principal component analysis (PCA). To quantify length variations, the distances between the anterior superior iliac spines (ASIS), the anterior inferior iliac spines (AIIS), the promontory and symphysis (conjugate vera) as well as the ischial spines (diameter transversa) were measured for the three mean models and the existing ABM.

PCA demonstrated large variability regarding pelvic surface and size. Principal component one (PC 1) contributed to 24% of the total anatomical variation and predominantly displayed a size variation pattern. PC 2 (17.7% of variation) mainly exhibited anatomical variations originating from differences in shape. Female and male models were similar in ASIS (225±20 mm; 227±13 mm) and AIIS (185±11 mm; 187±10 mm), whereas differed in conjugate vera (116±10 mm; 105±10 mm) and diameter transversa (105±7 mm; 88±8 mm). Comparing the Asian unisex model to the existing ABM, the external pelvic measurements ASIS (22.6 cm; 27.5 cm) and AIIS (186 mm; 209 mm) differed notably. Conjugate vera (111 mm; 105 mm) and diameter transversa (97 mm; 95 mm) were similar in both models. Low variability of mean distances (3.78±1.7 mm) was found beyond a sample number of 30 CTs.

Our analysis revealed notable anatomical variations regarding size dominating over shape and gender-specific variability. Dimensions of the generated mean models were comparatively smaller compared to the existing ABM. This highlights the necessity for generation of Asian ABMs by evidence-based modeling techniques.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 79 - 79
1 Mar 2021
Alves J Owen M Mason D
Full Access

Abstract

Cranial cruciate ligament (CrCL) disease in dogs causes pain and osteoarthritis (OA) and surgical treatment does not prevent OA progression. Glutamate receptor (GluR) antagonists alleviate pain and degeneration in rodent models of OA, but it is unknown whether they are a suitable treatment for dogs. Understanding GluR signalling in CrCL disease may lead to novel therapeutics in both veterinary and human medicine.

Objectives

To determine whether age, breed, sex, weight, and therapeutic(s) influence lameness and pre-operative radiographic OA scoring in dogs with CrCL disease and whether GluRs are expressed, in this disease.

Methods

Surgical waste (CrCL and medial meniscus), clinical data, stifle radiographs, lameness scores (1–4, mild-unloading limb) were obtained with full informed consent (RCVS ethics approval, ref: 2017/14/Alves). OA scoring was performed on radiographs [VCOT, 2017, 30(6):377–384, 15–60, normal-severe OA], and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-2 and kainate (KA)-1 GluR expression compared in diseased versus control tissues by immunohistochemistry (IHC).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 3 - 3
1 Mar 2021
To K Zhang B Romain K Mak CC Khan W
Full Access

Abstract

Objective

Articular cartilage damaged through trauma or disease has a limited ability to repair. Untreated, these focal lesions progress to generalized changes including osteoarthritis. Musculoskeletal disorders including osteoarthritis are the most significant contributor to disability globally. There is increasing interest in the use of mesenchymal stem cells (MSCs) for the treatment of focal chondral lesions. There is some evidence to suggest that the tissue type from which MSCs are harvested play a role in determining their ability to regenerate cartilage in vitro and in vivo. In humans, MSCs derived from synovial tissue may have superior chondrogenic potential.

Methods

We carried out a systematic literature review on the effectiveness of synovium-derived MSCs (sMSCs) in cartilage regeneration in in vivo studies in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Nineteen studies were included in our review; four examined the use of human sMSCs and the remainder were conducted using sMSCs harvested from animals.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 4 - 4
1 Mar 2021
Braxton T Lim K Rnjak-Kovacina J Alcala-Orozco C Woodfield T Jiang L Jia X Yang X
Full Access

Abstract

Objectives

Assess and characterise the suitability of a novel silk reinforced biphasic 3D printed scaffold for osteochondral tissue regeneration.

Methods

Biphasic hybrid scaffolds consisted of 3D printed poly(ethylene glycol)-terephthalate-poly(butylene terephthalate)(PEGT/PBT) scaffold frame work (pore size 0.75mm), which has been infilled with a cast and freeze dried porous silk scaffold (5×5×2mm3), in addition to a seamless silk top layer (1mm). Silk scaffolds alone were used as controls. Both the biphasic and control scaffolds were characterised via uniaxial compression testing (strain rate 0.1mm/min), and the potential biocompatibility of the scaffolds was tested via in vitro culture of seeded bone marrow stromal cells post fabrication.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 88 - 88
1 Mar 2021
Nicholson J
Full Access

Abstract

Objectives

We aimed to evaluate if union of clavicle fractures can be predicted at six weeks post-injury by the presence of bridging callus detected by ultrasound.

Methods

Adult patients who sustained a displaced midshaft clavicle were recruited prospectively. We assessed patient demographics, functional scores and radiographic predictors with a standardized protocol at six weeks. Ultrasound evaluation of the fracture site was undertaken to determine if sonographic bridging callus was present. Nonunion was determined by CT scanning at six months post-injury. Clinical features at six weeks were used to stratify patients at high risk of nonunion and a QuickDASH ≥40, fracture movement on examination or absence of callus on radiograph.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 77 - 77
1 Mar 2021
Wang J Roberts S McCarthy H Tins B Gallacher P Richardson J Wright K
Full Access

Abstract

Objectives

Meniscus allograft and synthetic meniscus scaffold (Actifit®) transplantation have shown promising outcomes for symptoms relief in patients with meniscus deficient knees. Untreated chondral defects can place excessive load onto meniscus transplants and cause early graft failure. We hypothesised that combined ACI and allograft or synthetic meniscus replacement might provide a solution for meniscus deficient individuals with co-existing lesions in cartilage and meniscus.

Methods

We retrospectively collected data from 17 patients (16M, 1F, aged 40±9.26) who had ACI and meniscus allograft transplant (MAT), 8 patients (7M, 1F, aged 42±11) who underwent ACI and Actifit® meniscus scaffold replacement. Other baseline data included BMI, pre-operative procedures and cellular transplant data. Patients were assessed by pre-operative, one-year and last follow-up Lysholm score, one-year repair site biopsy, MRI evaluations.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 69 - 69
1 Mar 2021
Sahm F Grote VF Detsch R Kreller T Boccaccini A Bader R Jonitz-Heincke A
Full Access

Several electrical fields are known to be present in bone tissue as originally described by Fukada and Yasuda in the year 1957. Intrinsic voltages can derive from bone deformation and reversely lead to mechanical modifications, called the piezoelectric effect. This effect is used in the clinic for the treatment of bone defects by applying electric and magnetic stimulation directly to the bone supplied with an implant such as the electroinductive screw system. Through this system a sinusoidal alternating voltage with a maximum of 700 mV can be applied which leads to an electric field of 5–70 V/m in the surrounding bone. This approach is established for bone healing therapies. Despite the established clinical application of electrical stimulation in bone, the fundamental processes acting during this stimulation are still poorly understood. A better understanding of the influence of electric fields on cells involved in bone formation is important to improve therapy and clinical success.

To study the impact of electrical fields on bone cells in vitro, Ti6Al4V electrodes were designed according to the pattern of the ASNIS III s screw for a 6-well system. Osteoblasts were seeded on collagen coated coverslip and placed centred on the bottom of each well. During four weeks the cells were stimulated 3×45 min/d and metabolic and alkaline phosphatase (ALP) activity as well as gene expression of cells were analysed. Furthermore, supernatants were collected and proteins typical for bone remodelling were examined.

The electrical stimulation did not exert a significant influence on the metabolic activity and the ALP production in cells over time using these settings. Gene expression of BSP and ALP was upregulated after the first 3 days whereas OPG was increased in the second half after 14 days of electrical stimulation. Moreover, the concentration of the released proteins OPG, IL-6, DKK-1 and OPN increased when cells were cultivated under electrical stimulation. However, no changes could be seen for essential markers, like RANKL, Leptin, BMP-2, IL-1beta and TNF-alpha.

Therefore, further studies will be done with osteoblasts and osteoclasts to study bone remodelling processes under the influence of electrical fields more in detail. This study was supported by the German Research Foundation (DFG) JO 1483/1-1.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 80 - 80
1 Mar 2021
Arafa M
Full Access

Abstract

Objective

To compare the clinical and radiological outcome between less invasive stabilization system (LISS, Synthes, Paoli, PA.) and open reduction with internal fixation (ORIF) for the treatment of extraarticular proximal tibia fractures through the lateral approach.

Background

Proximal tibial fractures present a difficult treatment challenge with historically high complication rates. ORIF has been in vogue for long time with good outcome. But these are associated with problems especially overlying skin conditions, delayed recovery and rehabilitation with limited functional outcome. LISS is an emerging procedure for the treatment of proximal tibial fractures. It preserves soft tissue and the periosteal circulation, which promotes fracture healing.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 81 - 81
1 Mar 2021
Yaghmour KM Hossain F Konan S
Full Access

Abstract

Objective

In this systematic review we aim to compare wound complication rates from Negative Pressure Wound Therapy (NPWT) to dry sterile surgical dressings in primary and revision total knee arthroplasty (TKA).

Methods

A search was performed using PubMed, Embase, Science Direct, and Cochrane Library. Eligible studies included those investigating the use of NPWT in primary and revision TKA. Exclusion criteria included studies investigating NPWT not related to primary or revision TKA; studies in which data relating to NPWT was not accessible; missing data; without an available full text, or not well reported. We also excluded studies with poor scientific methodology. All publications were limited to the English language. Abstracts, case reports, conference presentations, and reviews were excluded. Welch independent sample t-test was used for the statistical analysis.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 125 - 125
1 Mar 2021
Eggermont F van der Wal G Westhoff P Laar A de Jong M Rozema T Kroon HM Ayu O Derikx L Dijkstra S Verdonschot N van der Linden YM Tanck E
Full Access

Patients with cancer and bone metastases can have an increased risk of fracturing their femur. Treatment is based on the impending fracture risk: patients with a high fracture risk are considered for prophylactic surgery, whereas low fracture risk patients are treated conservatively with radiotherapy to decrease pain. Current clinical guidelines suggest to determine fracture risk based on axial cortical involvement of the lesion on conventional radiographs, but that appears to be difficult. Therefore, we developed a patient-specific finite element (FE) computer model that has shown to be able to predict fracture risk in an experimental setting and in patients. The goal of this study was to determine whether patient-specific finite element (FE) computer models are better at predicting fracture risk for femoral bone metastases compared to clinical assessments based on axial cortical involvement on conventional radiographs, as described in current clinical guidelines.

45 patients (50 affected femurs) affected with predominantly lytic bone metastases who were treated with palliative radiotherapy for pain were included. CT scans were made and patients were followed for six months to determine whether or not they fractured their femur. Non-linear isotropic FE models were created with the patient-specific geometry and bone density obtained from the CT scans. Subsequently, an axial load was simulated on the models mimicking stance. Failure loads normalized for bodyweight (BW) were calculated for each femur. High and low fracture risks were determined using a failure load of 7.5 × BW as a threshold. Experienced assessors measured axial cortical involvement on conventional radiographs. Following clinical guidelines, patients with lesions larger than 30 mm were identified as having a high fracture risk. FE predictions were compared to clinical assessments by means of diagnostic accuracy values (sensitivity, specificity and positive (PPV) and negative predictive values (NPV)).

Seven femurs (14%) fractured during follow-up. Median time to fracture was 8 weeks. FE models were better at predicting fracture risk in comparison to clinical assessments based on axial cortical involvement (sensitivity 100% vs. 86%, specificity 74% vs. 42%, PPV 39% vs. 19%, and NPV 100% vs. 95%, for the FE computer model vs. axial cortical involvement, respectively). We concluded that patient-specific FE computer models improve fracture risk predictions of femoral bone metastases in advanced cancer patients compared to clinical assessments based on axial cortical involvement, which is currently used in clinical guidelines. Therefore, we are initiating a pilot for clinical implementation of the FE model.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 10 - 10
1 Mar 2021
Kooiman E Styczynska-Soczka K Amin A Hall A
Full Access

Abstract

Objectives

Human articular cartilage chondrocytes undergo changes to their morphology and clustering with cartilage degeneration as occurs in osteoarthritis(1). The consequences of chondrocyte de-differentiation on mechanically-resilient extracellular matrix metabolism are, however, unclear. We have assessed whether there is a relationship between abnormal chondrocyte morphology, as demonstrated by the presence of cytoplasmic processes, and chondrocyte clustering, with cell-associated type-I collagen during cartilage degeneration.

Methods

The femoral heads of 9 patients were obtained (with Ethical permission/consent) following hip replacement surgery and cartilage areas graded (Grade-0 non-degenerate; Grade-1 mildly degenerate). In situ chondrocyte morphology and cell-associated type-I collagen were labelled fluorescently with CMFDA Cell tracker green, and immuno-fluorescence respectively then visualised/quantified using confocal laser scanning microscopy and imaging software.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 12 - 12
1 Mar 2021
Merrild NG Holzmann V Grigoriadis A Gentleman E
Full Access

Abstract

Objective

Clinical treatments to repair articular cartilage (AC) defects such as autologous cartilage implantation (mosaicplasty) often suffer from poor integration with host tissue, limiting their long-term efficacy. Thus to ensure the longevity of AC repair, understanding natural repair mechanisms that allow for successful integration between cartilaginous surfaces, as has been reported in juvenile tissue, may be key. Here, we evaluated cartilage integration over time in a pig explant model of natural tissue repair by assessing expression and localisation of major ECM proteins, enzymatic cross-linkers including the five isoforms of lysyl oxidase (LOX), small leucine-rich repeat proteoglycans (SLRP's), and proteases (e.g. ADAMTS4).

Methods

AC was retrieved from the femoral condyles of 8-week-old pigs. Full thickness 6mmØ AC discs were prepared, defects were induced, and explants cultured for up to 28 days. After fixation, sections were stained using Safranin-O and antibodies against Collagen types I & II, LOX, and ADAMTS4. Gene expression analyses were performed using qPCR. We also cultured devitalized samples, either with or without enzymatic treatment to deplete proteoglycans, for 28 days and similarly assessed repair.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 15 - 15
1 Mar 2021
Dalal S Setia P Debnath A Guro R Kotwal R Chandratreya A
Full Access

Abstract

Background

Recurrent patellar dislocation in combination with cartilage injures are difficult injuries to treat with confounding pathways of treatment. The aim of this study is to compare the clinical and functional outcomes of patients operated for patellofemoral instability with and without cartilage defects.

Methods

82 patients (mean age-28.8 years) with recurrent patellar dislocations, who underwent soft-tissue or bony procedures, were divided into 2 matched groups (age, sex, follow-up and type of procedure) of 41 each based on the presence or absence of cartilage defects in patella. Chondroplasty, microfracture, osteochondral fixation or AMIC-type procedures were done depending on the nature of cartilage injury. Lysholm, Kujala, Tegner and Subjective Knee scores of both groups were compared and analysed. Complications and return to theatre were noted.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 16 - 16
1 Mar 2021
Phillips A
Full Access

Abstract

Objectives

Bone shape and internal architecture are accepted as optimised to resist joint contact and muscle forces the skeleton is subjected to through daily living and more demanding activities. Finite element studies to predict bone architecture, either using continuum or structural approaches have made assumptions common in structural optimisation, that lead to trabecular bone effectively being modelled as a truss-type structure, with compressive or tensile strains, present due to axial forces driving adaptation. These models are successful in predicting bone fracture, and trends in bone degradation associated with disuse or unloading osteopenia but tend to overpredict bone mineral density reduction compared to clinical observations.

Methods

A new structural model of bone adaptation, including both trabeculae (element) cross-section adaptation in response to axial force and biaxial bending moments, and alteration of joint (node) positions within the trabecular network, was developed using a Voronoi space partition to define the initial network. This was compared to results from a structural bone adaptation using a truss-type network generated by connecting each node to its nearest 16 neighbours [1].


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 18 - 18
1 Mar 2021
Ng G Bankes M Grammatopoulos G Jeffers J Cobb J
Full Access

Abstract

OBJECTIVES

Cam femoroacetabular impingement (FAI – femoral head-neck deformity) and developmental dysplasia of the hip (DDH – insufficient acetabular coverage) constitute a large portion of adverse hip loading and early degeneration. Spinopelvic anatomy may play a role in hip stability thus we examined which anatomical relationships can best predict range of motion (ROM).

METHODS

Twenty-four cadaveric hips with cam FAI or DDH (12:12) were CT imaged and measured for multiple femoral (alpha angles, head-neck offset, neck angles, version), acetabular (centre-edge angle, inclination, version), and spinopelvic features (pelvic incidence). The hips were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°); and performed internal-external rotations to 5 Nm in each position. Independent t-tests compared the anatomical parameters and ROM between FAI and DDH (CI = 95%). Multiple linear regressions determined which anatomical parameters could predict ROM.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 25 - 25
1 Mar 2021
Zaribaf F Gill H Pegg E
Full Access

Abstract

Objectives

Ultra-High Molecular Weight Polyethylene (UHMWPE) can be made radiopaque through the diffusion of an oil-based contrast agent (Lipiodol Ultra-fluid). A similar process is used for Vitamin E incorporated polyethylene, which has a well-established clinical history. This study aimed to quantify the leaching of Lipiodol and compare to vitamin E polyethylene.

Method

GUR 1050 polyethylene (4 mm thickness) was cut into squares, 10 mm2. Samples (n=5) were immersed in 25 ml Lipiodol (Guerbet, France), or 15 ml Vitamin E (L-atocopherol, Sigma-Aldrich, UK). To facilitate diffusion, samples were held at 105°C for 18 hours. After treatment, all samples were immersed in DMEM (Sigma-Aldrich, UK) with Penicillin Streptomycin (Sigma-Aldrich, Kent, UK) at 4%v/v and held at 37°C in an incubator. Untreated polyethylene samples were included as controls. Leaching was quantified gravimetrically at weeks 2, 4 and 8. The radiopacity of the Lipiodol-diffused samples was investigated from µCT images (162kV, resolution 0.2 mm, X Tec, XT H 225 ST, Nikon Metrology, UK).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 26 - 26
1 Mar 2021
Malik S Hart D Parashin S Malik S McRae S MacDonald P
Full Access

Abstract

Objectives

To evaluate mechanical properties of three suture-tendon constructs, the Krackow stitch (KS), the modified Prusik knot (PK) and the Locking SpeedWhip (LSW), using human cadaveric quadriceps grafts (QT).

Methods

Thirty QT grafts were obtained from human cadaver specimens and an equal number of tendon-suture constructs were prepared for three stitches: KS, PK and LSW. The constructs were mounted in a materials testing machine (ElectroPuls E10000, Instron, Norwood, MA) and subject to tensile loading based on an established protocol. Load and displacement data for each tendon-suture construct were recorded.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 27 - 27
1 Mar 2021
Dandridge O Garner A van Arkel R Amis A Cobb J
Full Access

Abstract

Objectives

Unicompartmental (UKA) and bicompartmental (BCA) knee arthroplasty are associated with improved functional outcomes compared to Total Knee Arthroplasty (TKA) in suitable patients, although the reason is poorly understood. The aim of this study was to measure how the different arthroplasties affect knee extensor function.

Methods

Extensor function was measured for sixteen cadaveric knees and then re-tested following the different arthroplasties. Eight knees underwent medial UKA then BCA, then posterior-cruciate retaining TKA, and eight underwent the lateral equivalents then TKA. Extensor efficiency was calculated for ranges of knee flexion associated with common activities of daily living. Data were analyzed with repeated measures analysis of variance (α=0.05).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 28 - 28
1 Mar 2021
Bruce D Murray J Whitehouse M Seminati E Preatoni E
Full Access

Abstract

Objectives

1. To investigate the effect of revision total knee replacement (TKR) on gait kinematics in patients with a primary TKR and instability.2. To compare gait kinematics between patients with a well-functioning TKR and those with a primary TKR and symptoms of instability.

Methods

This single-centre observational study is following patients who have had a revision TKR due to knee instability. Data was collected pre- and post-operatively at 8–12 week follow-up. The data was compared to a control group of 18 well-functioning TKR patients. Kinematic gait data was collected during routine clinics using a treadmill-based infrared 3D system (Vicon, Oxford, UK) and a published lower limb marker-set. Patients performed 15 strides at three different speeds: 0.6mph, self-selected, and a ‘slow walk’ normalised to leg length (Froude number 0.09). PROMs questionnaires were collected. NHS ethical approval was obtained.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 66 - 66
1 Mar 2021
Bong GSY Browne TJ Morrissey D
Full Access

Abstract

Objectives

To analyse the costs and benefits of sending femoral head specimens for histopathological analysis and whether our practice had changed since the original study five years ago.

Methods

The cohort definition was patients who had both undergone hip hemiarthroplasties (HHAs) and had femoral head specimens sent for histopathological analysis at our tertiary care institution from 2013 to 2016. Retrospective review of clinical and electronic notes was performed on these patients for history of malignancy, histopathological diagnosis of femoral head, indication for histopathological examination and radiological studies. The total number of HHAs performed at the centre and the costs involved in analysing each femoral head specimen were identified.


Abstract

Objectives

Hip instability following total hip arthroplasty in treatment of intracapsular neck of femur fractures is reported at 8–11%. Utilising the principle of a small articulation to minimize the problems of wear coupled with a large articulation, dual-mobility total hip arthroplasty prostheses stabilise the hip further than conventional fixed-bearing designs. The aim of this study is to compare the rate of dislocation and complication between standard fixed-bearing and dual-mobility prostheses for the treatment of intracapsular neck of femur fractures.

Methods

A four-year retrospective review in a large district general hospital was completed. All cases of intracapsular neck of femur fractures treated with total hip arthroplasty were identified through the theatre logbooks. Patient's operative and clinical notes were retrospectively reviewed to collect data.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 70 - 70
1 Mar 2021
Scattergood S Flannery O Berry A Fletcher J Mitchell S
Full Access

Abstract

Objectives

The use of cannulated screws for femoral neck fractures is often limited by concerns of avascular necrosis (AVN) occurring, historically seen in 10–20% of fixed intracapsular fractures. The aim of this study was to investigate the rate of AVN with current surgical techniques within our unit.

Methods

A single centre retrospective review was performed. Operative records between 1st July 2014 and 31st May 2019 were manually searched for patients with an intracapsular neck of femur fracture fixed with cannulated screws, with minimum one year follow up. Patient records and radiographs were reviewed for clinical and radiographic diagnoses of AVN and/or non-union. Fracture pattern and displacement, screw configuration and reduction techniques were recorded, with radiographs independently analysed by five orthopaedic surgeons.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 64 - 64
1 Mar 2021
Korntner S Pieri A Pugliese ZWE Zeugolis D
Full Access

The fibrocartilaginous enthesis displays a complex interface between two mechanically dissimilar tissues, namely tendon and bone. This graded transition zone consists of parallel collagen type I fibres arising from the tendon and inserting into bone across zones of fibrocartilage with aligned collagen type I and collagen type II fibres and mineralised fibrocartilage. Due the high stress concentrations arising at the interface, entheses are prone to traumatic and chronic overuse injuries such as rotator cuff and anterior cruciate ligament (ACL) tears. Treatment strategies range from surgical reattachment for complete tears and conservative treatments (physiotherapy, anti-inflammatory drugs) in chronic inflammatory conditions. Generally, the native tissue architecture is not re-established and mechanically inferior scar tissue is formed. Current interfacial tissue engineering approaches pose scaffold-associated drawbacks and limitations, such as foreign body response. Using a thermo-responsive electrospun scaffold that provides architectural signals similar to native tissues and can be removed prior to implantation, we aim to develop an ECM-rich, cell-based implant for tendon-enthesis regeneration. Alcian blue staining revealed highest sGAG deposition in cell (human adipose derived stem cells) sheets grown on random electrospun fibres and lowest sGAG deposition in collagen type I sponges. Cells did not show an equal distribution throughout the collagen type II scaffolds but tended to form localised aggregates. Thermo-responsive electrospun fibres with random and aligned fibre orientation provided an adequate three-dimensional environment for chondrogenic differentiation of multilayer hADSC-sheets shown by high ECM-production, especially high sGAG deposition. Chondrogenic cell sheets showed increased expression of SOX9, COL2A1, COL1A1, COMP and ACAN after 7 days of chondrogenic induction when compared to pellet culture. Anisotropic fibres enabled the generation of aligned chondrogenic cell sheets, shown by cell and collagen fibre alignment. Thermoresponsive electrospun fibres showed high chondro-inductivity due to their three-dimensionality and therefore pose a promising tool for the generation of scaffold-free multilayer constructs for tendon-enthesis repair within short culture periods. Aligned chondrogenic cell sheets mimic the zonal orientation of the native enthesis as the fibrocartilaginous zone exhibits high collagen alignment.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 73 - 73
1 Mar 2021
Murphy B McCabe J
Full Access

Abstract

Objective

Spinal cord surgery is a technically challenging endeavour with potentially devastating complications for patients and surgeons. Intra-operative neurophysiological monitoring(IONM), or spinal cord monitoring (SCM), is one method of preventing and identifying damage to the spinal cord. At present, indications for its use are based more on individual surgeon preference and for medico legal purposes. Our study aimed to determine IONM's utility as a clinical tool.

Methods

This is a retrospective case series of 169 patients who underwent spinal surgery with IONM at two institutions between 2013 and 2018. Signal changes detected were recorded as well as the surgeon's response to these changes. Patients were followed up to one-year post-surgery using our institution's EVOLVE system. The main outcome measure in this study was new post-operative neurological signs and/or symptoms and what effect, if any, IONM and subsequent surgeon intervention had on these complications.


Abstract

Objectives

To determine the effects of self-management interventions (SMIs) including an exercise component (EC) on low back pain (LBP) and disability and to determine whether SMIs with tailored exercises (TEs) have superior outcomes compared to SMIs with general exercises (GEs).

Methods

An electronic systematic search of randomized controlled trials (RCTs) was performed in 5 electronic databases. RCTs compared SMIs with an EC to control interventions. Data were extracted at 3 follow-up points (short-term, intermediate and long-term) and meta-analyses were performed. Reviewed RCTs were divided into subgroups based on whether the EC was tailored or generic. A subgroup meta-analysis was performed at the short-term follow-up to assess whether the SMIs with TEs have superior outcomes compared to SMIs with GEs.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 66 - 66
1 Mar 2021
Pugliese E Zeugolis D
Full Access

The enthesis is a specialised zonal tissue interface between tendon and bone, essential for adequate force transmission and composed by four distinct zones, namely tendon, fibrocartilage, mineralized fibrocartilage and bone. Following injuries and surgical repair, the enthesis is often not reestablished and so far, traditionally used tissue substitutes have lacked to reproduce the complexity of the native tissue. In this work, we hypothesised that a collagen-based three-layer scaffold that mimic the composition of the enthesis, in combination with bioactive molecules, will enhance the functional regeneration of the enthesis. A three-layer sponge composed of a tendon-like layer (collagen I), a cartilage-like layer (collagen II) and a bone-like layer (collagen I and hydroxyapatite) was fabricated by an iterative layering freeze-drying technique. Scaffold porosity and structural continuity at the interfaces were assessed through SEM analysis. Bone-marrow derived stem cells (BMSCs) were seeded by syringe vacuum assisted technique on the scaffold. Scaffolds were cultured in basal media for 3 days before switching to differentiation media (chondrogenic, tenogenic and osteogenic). BMSCs metabolic activity, proliferation and viability were assessed by alamarBlue, PicoGreen and Live/Dead assays. At D21 the scaffolds were fixed, cryosectioned and Alizarin Red and Alcian Blue stainings were performed in order to evaluate BMSC differentiation towards osteogenic and chondrogenic lineage. The presence of collagen I and tenascin in the scaffolds was evaluated by immunofluorescence staining at D21 in order to assess tenogenic differentiation of BMSCs. Subsequently, the cartilage-like layer was functionalized with IGF-1, seeded with BMSCs and cultured in basal media up to D21. Structural continuity at the interfaces of the scaffolds was confirmed by SEM and scaffold porosity was assessed as >98%. The scaffolds supported cell proliferation and infiltration homogeneously throughout all the layers up to D21. Osteogenic differentiation of BMSC selectively in the bone-like layer was confirmed by Alizarin red staining in scaffolds cultured in basal and osteogenic media. Alcian blue staining revealed the presence of proteoglycans selectively in the cartilage-like layer in scaffolds cultured in chondrogenic media but not in basal media. Increased expression of the tenogenic markers collagen I and tenascin were observed in the tendon-like layer of scaffolds cultured in tenogenic but not in basal media for 21 days. The presence of IGF-1 increased osteogenic and chondrogenic differentiation of BMSCs, whereas no difference was observed for tenogenic differentiation. In conclusion, a 3-layer collagen sponge was successfully fabricated with distinct but integrated layers; the different collagen composition of the non-functionalized 3-layer sponge was able to regulate BMSC differentiation in a localized manner within the scaffold. The scaffold functionalization with IGF-1 accelerated chondrogenic and osteogenic BMSC differentiation. Overall, functionalization of the 3-layer scaffolds holds promising potential in enthesis regeneration.