In the framework of the modiCAS (Modular Interactive Computer Assisted Surgery) Project, which emerged from a collaboration of the University of Siegen and the University of Frankfurt in the fields of mechatronics and medicine, the development of a modular system to assist the surgeon during the whole planning and operation procedure has been started. A completely new realization of a
Problem. Total hip replacement (THA) is among the most common and highest total spend elective operations in the United States. However, up to 7% of patients have 90-day complications after surgery, most frequently joint dislocation that is related to poor acetabular component positioning. These complications lead to patient morbidity and mortality, as well as significant cost to the health system. As such, surgeons and hospitals value navigation technology, but existing solutions including robotics and optical navigation are costly, time-consuming, and complex to learn, resulting in limited uptake globally. Solution. Augmented reality represents a navigation solution that is rapid, accurate, intuitive, easy to learn, and does not require large and costly equipment in the operating room. In addition to providing cutting edge technology to specialty orthopedic centers, augmented reality is a very attractive solution for lower volume and smaller operative settings such as ambulatory surgery centers that cannot justify purchases of large capital equipment navigation systems. Product. HipInsight™ is an augmented reality solution for navigation of the acetabular component in THA. HipInsight is a navigation solution that includes preoperative, cloud based surgical planning based on patient imaging and surgeon preference of implants as well as intraoperative guidance for placement of the acetabular component. Once the patient specific surgical plan is generated on the cloud-based
Introduction. Lesion location and volume are critical factors to select patients with osteonecrosis for whom resurfacing arthroplasty is appropriate. However, no reliable surgical
Introduction. The achieved anteversion of uncemented stems is to a large extent limited by the internal anatomy of the bone. A better understanding of this has recently become an unmet need because of the increased use of uncemented stems. We aimed to assess plan compliance in six degrees of freedom to evaluate the accuracy of PSI and guides for stem positioning in primary THAs. Materials and Methods. We prospectively collected 3D plans generated from preoperative CTs of 30 consecutive THAs (17 left and 13 right hips), in 29 patients with OA, consisting of 16 males and 13 females (median age 68 years, range 46–83 years). A single CT-based
Recent innovations in total ankle replacement (TAR) have led to improvements in implant survivorship, accuracy of component positioning and sizing, and patient outcomes. CT-generated pre-operative plans and cutting guides show promising results in terms of placement enhancement and reproducibility in clinical studies. The purpose of this study was to determine the accuracy of 1) implant sizes used and 2) alignment corrections obtained intraoperatively using the cutting guides provided, compared to what was predicted in the CT generated pre-operative plans. This is a retrospective study looking at 36 patients who underwent total ankle arthroplasty using a CT generated pre-operative
Introduction: For longer lasting and bone conserving cementless stem fixation, stable and physiological proximal load transfer from the stem to the canal should be one of the most essential factors. According to this understanding, we have been developing a custom stem system with lateral flare and an off-the-shelf (OTS) lateral flare stem system was added to the series. On the other hand, dysplastic hips are often understood that they have larger neck shaft angle as well as larger anteversion. In other words they are in the status called “coxa valga.” From this point of view we had been mainly using custom stems for the dysplastic cases before. After off-the-shelf lateral flare stem system; which is designed to have very high proximal fit and fill to normal femora; was added, we have been using 3D preoperative
Introduction. Kinematics post-TKA are complex; component alignment, component geometry and the patient specific musculoskeletal environment contribute towards the kinematic and kinetic outcomes of TKA. Tibial rotation in particular is largely uncontrolled during TKA and affects both tibiofemoral and patellofemoral kinematics. Given the complex nature of post- TKA kinematics, this study sought to characterize the contribution of tibial tray rotation to kinematic outcome variability across three separate knee geometries in a simulated framework. Method. Five 50. th. percentile knees were selected from a database of planned TKAs produced as part of a pre-operative dynamic
Introduction: The success of cemenntless THA (total hip arthroplasty) mainly depends on the choices of stem, its size and accuracy of stem orientation. Selection of the optimal stem judging only by plain X-ray is not so easy. Because deformity varies in each case and it is impossible to obtain profile view of the hip. As osteoarthritic patients tend to develop external rotation contractures, radiographic position of the patients with correct rotation is very difficult. To override these problems, we have been using 3-D preoperative
Introduction. Accurate acetabular cup orientation could lead to successful surgical results in total hip arthroplasty (THA). We introduce a novel CT-based three-dimensional (3D)
Trauma surgeries in the pelvic area are often difficult and prolonged processes that require comprehensive preoperative planning based on a CT scan. Preoperative planning is essential for the appreciation and spatial visualisation of the bone fragments, for planning the reduction strategy, and for determining the optimal type, size, and location of the fixation hardware. We have developed a novel haptic-based patient specific preoperative
Introduction. Accurate acetabular cup orientation could lead to successful surgical results in total hip arthroplasty (THA). We introduce a novel CT-based three-dimensional (3D)
In patients with developmental dysplasia of the hip (DDH) chronic joint dislocation induces remodeling of the soft tissue with contractures, muscle atrophy, especially of the hip abductors muscles, leading to severe motor dysfunction, pain and disability (1). The aim pf the present work is to explore if a correct positioning of the prosthetic implants through 3D skeletal modeling surgical planning technologies and an adequate customized rehabilitation can be beneficial for patients with DDH in improving functional performance. The project included two branches: a methodology branch of software development for the muscular efficiency calculation, which was inserted in the Hip-Op surgical
Background. The Robotic Spinal Surgery System (RSSS) is a robot system designed for pedicle screw insertion containing image based navigation
Purpose. The purpose of this study was to evaluate the postoperative maximal flexion of Robotic assisted TKA which does not increase the posterior condylar offset after surgery and compare CT and conventional radiography in measuring the posterior condylar offset changes. Materials and method. 50 knees of 37 patients who underwent Robotic TKA and underwent follow-up minimal one year were evaluated. CT based preoperative surgical
Background. The distal part of the radius is the most common localisation of fractures of the human body. Dislocated intraarticular fractures of the distal radius (FDR) are frequently treated by open reduction and internal fixation with a volar locking plate (VLP) under fluoroscopic guidance. Typically the locking screws are placed subchondral near the joint line to achieve maximum stability of the osteosynthesis. To avoid intraarticular screw placement an intraoperative virtual implant
Polyclinique le Languedoc, avenue de la Côte-des-Roses, 11100 Narbonne 7885. Purpose of the study: The goal of navigation for TKA is to improve the precision of the frontal alignment. Continuing this objective, we were interested in a different option than navigation: we wanted to optimise traditional instrumentation and associated an implantation procedure with a rigorous radiographic
NavioPFS™ is a hand-held robotic technology for bone shaping that employs computer control of a high-speed bone drill. There are two control modes – one based on control of exposure of the cutting bur and another based on the control of the speed of the cutting bur. The unicondylar knee replacement (UKR) application uses the image-free approach in which a mix of direct and kinematic referencing is used to define all parameters relevant for planning. After the bone cutting plan is generated, the user freely moves the NavioPFS handpiece over the bone surface, and carves out the parts of the bone targeted for removal. The real-time control loop controls the depth or speed of cut, thus resulting in the planned bone preparation. This experiment evaluates the accuracy of bone preparation and implant placement on cadaveric knees in a simulated clinical setting. Three operators performed medial UKR on two cadaver specimens (4 knees) using a proprietary implant design that takes advantage of the NavioPFS approach. In order to measure the placement of components, each component included a set of 8 conical divots in predetermined locations. To establish a shared reference frame, a set of four fiducial screws is inserted in each bone. All bones were cut using a 5 mm spherical bur. Exposure Control was the primary mode of operation for both condylar cuts – although the users utilised Speed Control to perform some of the more posterior burring activities and to prepare the peg holes. Postoperatively, positions of conical divots on the femoral and tibial implants and on the respective four fiducial screws were measured using a Microscribe digitising arm in order to compare the final and the planned implant position. All implants were placed within 1.5 mm of target position in any particular direction. Maximum translation error was 1.31 mm. Maximum rotational error was 1.90 degrees on a femoral and 3.26 degrees on a tibial component. RMS error over all components was 0.69mm/1.23 degrees. This is the first report of the performance of the NavioPFS system under clinical conditions. Although preliminary, the results are overall in accordance with previous sawbones studies and with the reports from comparable semi-active robotic systems that use real time control loop to control the cutting performance. The use of NavioPFS in UKR eliminates the need for conventional instrumentation and allows access to the bone through a reduced incision. By leveraging the surgeon's skill in manipulating soft tissues and actively optimising the tool's access to the bone, combined with the precision and reproducibility of the robotic control of bone cutting, we expect to make UKR surgery available to a wider patient population with isolated medial osteoarthritis that might otherwise receive a total knee replacement. In addition to accurate bone shaping with a handheld robotically controlled tool, NavioPFS system for UKR incorporates a CT-free
Hip resurfacing has advantages over hip replacement for younger, more active patients. However, it requires that surgeons learn new techniques for correctly cutting bone and positioning the components. Pre-operative
Introduction. Most surgeons utilize one of three axis options in conventional total knee arthroplasty (TKA), the transepicondylar axis (TEA), Whiteside's line (WSL) or the posterior condylar axis (PCA) with an external rotation correction factor. Each option has limitations and no clear algorithm has been determined for which option to use and when. Many surgeons believe the TEA to be the gold standard for determining rotation however it can be difficult to access intraoperatively. WSL and PCA have been used as surrogates for determining axial rotation in conventional TKA but may also be prone to error. MRI based preoperative
Introduction: Active Robots have been shown to be effective at performing arthroplasty, but some hesitation has been felt by the surgical world. The lack of human interface in the procedure has been one of the stumbling blocks towards wider acceptance. The Acrobot has been developed, at Imperial College London, in collaboration with University College London to allow the surgeon to perform the surgery himself, but with active constraint, preventing him from taking too much bone, or straying into soft tissue. Materials and methods: A preoperative