We present a review of 97 consecutive BioPro. ®. metallic
Introduction:. The treatment of 3- or 4-part proximal humeral fractures in elderly can be carried out with
Abstract. Background. 1. 63,284 patients presented with neck of femur fractures in England in 2020 (NHFD report 2021)2. To maximise theatre efficiency during the first wave of COVID-19, NHSE guidance recommended the use of HA for most patients requiring arthroplasty.3. The literature reports an incidence of
NICE Guidelines suggest patients should be offered a Total Hip Replacement (THR) rather than
Hip precautions are currently practiced in three-quarters of trauma hospitals in the UK, despite national recommendations from the ‘Blue Book’ not stating it as a requirement. Valuable therapist time is utilised alongside the need for specialised equipment, which can potentially delay discharge whilst it is being arranged.
Objective of this study was to explore the current practice of the use of hip precautions on discharge following
The incidence of hip fractures in the elderly is increasing. Minimally displaced and un-displaced hip fractures can be treated with either internal fixation or
Debate continues about the best treatment for patients over 65 years with non-displaced subcapital hip fractures: internal fixation (IF) or
Background: Alternative treatments in displaced fractures of the femoral neck include reduction and internal fixation, and arthroplasty. A variety of treatments are continuously introduced to the health care market and that makes prioritising, based on the severity of the disease, the effectiveness, and the cost effectiveness of the treatment, necessary. The aim of this study was to compare the estimated effect and costs of internal fixation and
Abstract. Background. Dislocation of a hip
Introduction and Objective. Dislocation of a hip
Between 2016–2019, 4 patients developed hip infections post-hemiarthroplasty. However, between 2020–2021 (Covid-19 pandemic period), 6 patients developed hip infections following hip
Background. Hip
Prosthetic joint infections (PJI) are devastating complications. Our knowledge on hip fractureassociated
The current evidence favors replacement for the treatment of displaced femoral neck fractures in the older patients. Controversies remain whether total hip replacement (THR), or
Joint
Abstract. Objectives. Current use of hard biomaterials such as cobalt-chrome alloys or ceramics to articulate against the relatively soft, compliant native cartilage surface reduces the joint contact area by up to two thirds. This gives rise to high and abnormal loading conditions which promotes degradation and erosion of the mating cartilage leading to pain, stiffness, and loss of function. Biomimetic soft lubrication strategies have been developed by grafting hydrophilic polymers onto substrates to form a gel-type surface. Surface grafted gels mimic the natural mechanisms of friction dissipation in synovial joints, showing a promising potential for use in
Recent NICE guidelines have suggested abandoning the Thompson
Abstract. Background. To determine the long-term survival outcomes of Copeland Resurfacing
Gram-negative prosthetic joint infections (GN-PJI) present unique challenges in management due to their distinct pathogenesis of biofilm formation on implant surfaces. To date, there are no animal models that can fully recapitulate how a biofilm is challenged in vivo in the setting of GN-PJI. The purpose of this study is to establish a clinically representative GN-PJI in vivo model that can reliably depict biofilm formation on titanium implant surface. We hypothesized that the biofilm formation on the implant surface would affect the ability of the implant to be osseointegrated. The model was developed using a 3D-printed, medical-grade titanium (Ti-6Al-4V), monoblock, cementless hemiarthroplasty hip implant. This implant was used to replace the femoral head of a Sprague-Dawley rat using a posterior surgical approach. To induce PJI, two bioluminescent Pseudomonas aeruginosa (PA) strains were utilized: a reference strain (PA14-lux) and a mutant strain that is defective in biofilm formation (DflgK-lux). PJI development and biofilm formation was quantitatively assessed in vivo using the in vivo imaging system (IVIS), and in vitro using the viable colony count of the bacterial load on implant surface. Magnetic Resonance Imaging (MRI) was acquired to assess the involvement of periprosthetic tissue in vivo, and the field emission scanning electron microscopy (FE-SEM) of the explanted implants was used to visualize the biofilm formation at the bone-implant interface. The implant stability, as an outcome, was directly assessed by quantifying the osseointegration using microCT scans of the extracted femurs with retained implants in vitro, and indirectly assessed by identifying the gait pattern changes using DigiGaitTM system in vivo. A localized prosthetic infection was reliably established within the hip joint and was followed by IVIS in real-time. There was a quantitative and qualitative difference in the bacterial load and biofilm formation between PA14 and DflgK. This difference in the ability to persist in the model between the two strains was reflected on the gait pattern and implant osseointegration. We developed a novel uncemented hip