Currently there are various knee prosthesis designs available each with its plus and minus points; there is no general consensus on whether mobile-bearing knees are functionally better than fixed-bearing ones. This study is designed to compare outcomes after total knee arthroplasty with both of the above prostheses. 50 patients (68 knees) who'd had a total knee arthroplasty between April 1999 and April 2008 at both Akhtar and Kian Hospitals for primary osteoarthritis were selected. In 30 cases a fixed-bearing knee (Scorpio(r), Stryker) and in the remaining 38 a mobile-bearing prosthesis (Rotaglide(r), Corin Group) was used. Patients' knees were scored before and after the operation according to the Knee Society Scoring System. The mobile-bearing group had an average age of 65 and 34 months' follow-up; in the fixed-bearing group the average age was 69 and the average follow-up 30 months.Background
Materials & Methods
Abstract. Objectives. Hip instability following total hip arthroplasty in treatment of intracapsular neck of femur fractures is reported at 8–11%. Utilising the principle of a small articulation to minimize the problems of wear coupled with a large articulation, dual-mobility total hip arthroplasty prostheses stabilise the hip further than conventional fixed-bearing designs. The aim of this study is to compare the rate of dislocation and complication between standard fixed-bearing and dual-mobility prostheses for the treatment of intracapsular neck of femur fractures. Methods. A four-year retrospective review in a large district general hospital was completed. All cases of intracapsular neck of femur fractures treated with total hip arthroplasty were identified through the theatre logbooks. Patient's operative and clinical notes were retrospectively reviewed to collect data. Results. A total of 91 patients underwent total hip arthroplasty for intracapsular neck of femur fracture in the four-year period. 61.5% were dual-mobility design versus 28.5% had fixed-bearing implants. There were no statistical differences between patient group characteristics. Choice of implant was dependent on surgeon preference. There was a 0.0% dislocation rate in the dual-mobility group versus 8.6% in the
Introduction. The mobile-bearings were introduced in total knee arthroplasty (TKA) to improve the knee performance by simulating more closely ‘normal’ knee kinematics, and to increase the longevity of TKA by reducing the polyethylene wear and periprosthetic osteolysis. However, the superiority between posterior-stabilized mobile-bearing and fixed-bearing designs still remains controversial. The objective of the present study was to compare the mid-term results of Scorpio + Single Axis system (Stryker Howmedica Osteonics, Allendale, New Jersey) for the mobile-bearing knees and Duracon system (Stryker Howmedica Osteonics, Allendale, New Jersey) for the fixed bearing design with regard to clinical and roentgenographic outcome with special reference to any complications and survivorship. Methods. Prospective, randomized, double-blinded controlled study was carried out on 56 patients undergoing primary, unilateral total knee arthroplasty for osteoarthritis, who were divided into two groups. Group I received mobile-bearing knee prosthesis (29 patients) and Group 2 received
In total knee replacement (TKR), neutral mechanical alignment (NMA) is targeted in prosthetic component implantation. A novel implantation approach, referred to as kinematic alignment (KA), has been recently proposed (Eckhoff et al. 2005). This is based on the pre-arthritic lower limb alignment which is reconstructed using suitable image-based techniques, and is claimed to allow better soft-tissue balance (Eckhoff et al. 2005) and restoration of physiological joint function. Patient-specific instrumentation (PSI) introduced in TKR to execute personalized prosthesis component implantation are used for KA. The aim of this study was to report knee kinematics and electromyography (EMG) for a number lower limb muscles from two TKR patient groups, i.e. operated according to NMA via conventional instrumentation, or according to KA via PSI. 20 patients affected by primary gonarthrosis were implanted with a cruciate-retaining
To evaluate prospectively the mid-term results of the Zimmer Unicondylar Knee arthoplasty (UKA). Between 2005 and 2012, 187 unicompartmental knee arthroplasties (UKA) were performed by a single surgeon using a
INTRODUCTION. Mobile-bearing knee prostheses have been designed in order to provide less constrained knee kinematics compared to
Introduction. The SAIPH™ (MatOrtho, UK) total knee replacement is a new
Background. Mobile-bearing (MB) total knee prostheses have been developed to achieve lower contact stress and higher conformity compared to fixed-bearing total knee prostheses. However, little is known about the in vivo kinematics of MB prostheses especially about the kinematics of polyethylene insert (PE). In vivo motion of PE during squatting still remains unclear. The objective of this study is to investigate the in vivo motion of MB total knee arthroplasty including PE during squatting. Patients and methods. We investigated the in vivo knee kinematics of 11 knees (10 patients) implanted with Vanguard Rotationg Platform High Flex (Biomet. (r). ). Under fluoroscopic surveillance, each patient did a wight-bearing deep knee bending motion. Motion between each component was analyzed using two- to three-dimensional registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femoral, tibial components, and PE (implanted with five tantalum beads intra-operatively) from single-view fluoroscopic images. We evaluated the range of motion between the femoral and tibial components, axial rotation between the femoral component and PE, the femoral and tibial component, and the PE and tibial component, and AP translation of the nearest point between the femoral and tibial component and between the femoral component and PE. Results. The mean range of hyper-extension was 0.5±3.2° (range:-4.0 to 4.7°) and the mean range of flexion of 119.0±11.3°(range:98 to 137°). The external rotating femoral component relative to the tibial component demonstrated 8.6±3.2°(range:5.5 to 14.7°) for 0-120 degrees flexion. The PE rotated 9.6±4.5°(range:2.5 to 18.0°) externally relative to the tibial component, the femoral component rotated little relative to the PE. In upright standing position, the femoral component already rotated 1.2±9.8°(range:-16.5 to 15.9°) externally relative to the tibial component and the PE also rotated 0.8±9.8°(range:-16.1 to 16.0°) externally on the tibial tray. From 0°to 120°of flexion there was almost little A-P translation of the medial femoral condyle within 2 mm. The lateral condyle translated posteriorly with knee flexion. The average amount of posterior translation was 5.7±1.6 mm (range:2.5 to 7.5 mm). The femoral component relative to the tibial component exhibited a medial pivot pattern external rotation for 0-120 degrees flexion. Discussion and conclusion. In this study, we evaluated the in vivo motion of MB total knee arthroplasty including PE during squatting. About this total knee prosthesis, the mobile-bearing mechanism which advantages over
Outcomes following TKA often are good, but patients sometimes lack adequate range of motion and strength. Reasons for these deficits may include instability and the loss of cruciate ligament function. One approach to TKA design is to retain the PCL, and configure the TKA surfaces to approximate the function of the ACL. This can be accomplished by having a lateral surface that controls tibiofemoral motion near extension, but allows femoral rollback with flexion. We have been using such a fixed-bearing TKA design since 2001. The purpose of this study was to determine if an ‘ACL-substituting’ arthroplasty design provides clinical and functional results comparable to traditional PCL-retaining arthroplasty designs. This series consists of 407 consecutive knees in 185 male and 222 female patients (73±9 years, 28±5 BMI) operated from November 2001 to August 2006. All patients underwent TKA by the same surgeon using PCL-retention and implantation of the same cemented ‘ACL-substituting’ TKA design. Clinical outcomes were evaluated using Knee Society Scores and radiographic review for the first 100 TKA with minimum 2 year follow-up. A subset of patients participated in IRB-approved protocols to quantitatively evaluate TKA motion and strength. Functional outcomes were assessed during gait, stair-climbing and curb step-over tasks for 10 unilateral TKA using a motion capture system, force platforms and inverse dynamics to measure the dynamic knee joint flexion moment. Kinematic outcomes were studied during kneeling for 20 TKA using fluoroscopy and shape matching techniques. Knee Society Scores averaged 96+7 (pain) and 95+12 (function) at an average of 3.2+0.7 (range, 2 to 5) years follow-up. Passive flexion averaged 122°±10°, with 70% of the TKA achieving >
120° flexion. Radiolucent lines (2–4 mm wide) were observed in 7 TKA. Peak flexion moments (dynamic strength) for the TKA averaged 79%, 80% and 85% of the patients’ contralateral normal knees during the gait, stair-climbing and step-over tasks, respectively. In maximum kneeling, knees averaged 131°±13° flexion, 10° ±4° tibial rotation, and 2mm/10mm posterior position of the medial/lateral condyles. This series’ early clinical follow-up was comparable to any well performing TKA. Knee flexion during passive examination and kneeling were comparable to the best reported results for PCL-retaining and PCL-substituting TKA. Peak knee flexion moments, a measure of functional strength, were comparable to the strongest knees reported in the literature. These early results suggest a
Mobile-bearing (MB) total knee prostheses have been developed to achieve lower contact stress and higher conformity than fixed-bearing total knee prostheses. However, little is known about the in vivo kinematics of MB prostheses especially about the motion of polyethylene insert (PE). And the in vivo motion of PE during squat motion has not been clarified. The objective of this study is to clarify the in vivo motion of MB total knee arthroplasty including PE during squat motion. Patients and methods: We investigated the in vivo knee kinematics of 11 knees (10 patients) implanted with PFC-Sigma RPF (DePuy). Under fluoroscopic surveillance, each patient did a wight-bearing deep knee bending motion. And motion between each component was analyzed using two-to three-dimensional registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femoral, tibial components, and PE (implanted with four tantalum beads intra-operatively) from single-view fluoroscopic images. We evaluated the range of motion between the femoral and tibial components, axial rotation between the femoral component and PE, the femoral and tibial component, and the PE and tibial component, and AP translation of the nearest point between the femoral and tibial component and between the femoral component and PE. Results: The mean range of hyper-extension was 2.1° and the mean range of flexion of 121.2°. The femoral component relative to the tibial component demonstrated 10.4° external rotation for 0–120 degrees flexion. The tibial component rotated 10.2° externally relative to the PE and the femoral component minimally rotated relative to the PE within ± 5 degrees. In upright standing position, the femoral component already rotated externally relative to the tibial component in 6.3°, and the PE also rotated on average 6.4° externally on the tibial tray. Typically the femoral component relative to the tibial component exhibited a central pivot pattern external rotation from extension to 80° knee flexion. Subsequently from 80 to 120°, bilateral condyles moved backward. In a similar fashion, the femoral component relative to the PE exhibited a central pivot pattern external rotation from extension to 70° knee flexion and subsequently bicondylar rollback from 70 to 120° knee flexion. Discussion and Conclusion: In this study, we evaluated the in vivo motion of PE during squat motion. About this total knee prosthesis, the mobile-bearing mechanism which advantages over
Background: Mobile-bearing (MB) total knee prostheses have been developed to achieve lower contact stress and higher conformity than fixed-bearing total knee prostheses. However, little is known about the in vivo kinematics of MB prostheses especially about the motion of polyethylene insert (PE). And the in vivo motion of PE during deep knee bending under weight-bearing conditions has not been clarified. The objective of this study is to clarify the in vivo motion of MB total knee arthroplasty including PE during weight-bearing deep knee bend motion. Patients and methods: We investigated the in vivo knee kinematics of 9 knees (9 patients) implanted with PFC-Sigma RPF (DePuy). Under fluoroscopic surveillance, each patient did a wight-bearing deep knee bending motion. And motion between each component was analyzed using two- to three-dimensional registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femoral, tibial components, and PE (implanted with four tantalum beads intra-operatively) from single-view fluoroscopic images. We evaluated the range of motion between the femoral and tibial components, axial rotation between the femoral component and PE, the femoral and tibial component, and the PE and tibial component, and AP translation of the nearest point between the femoral and tibial component and between the femoral component and PE. Results: The mean range of hyper-extension was 2.1° and the mean range of flexion of 121.2°. The femoral component relative to the tibial component demonstrated 13.0° external rotation for 0–120 degrees flexion. The tibial component rotated 12.1° externally relative to the PE and the femoral component minimally rotated relative to the PE within ± 5 degrees. In upright standing position, the femoral component already rotated externally relative to the tibial component in 7.8°, and the PE also rotated on average 8.2° externally on the tibial tray. Typically the femoral component relative to the tibial component exhibited a central pivot pattern external rotation from extension to 80° knee flexion. Subsequently from 80 to 120°, bilateral condyles moved backward. In a similar fashion, the femoral component relative to the PE exhibited a central pivot pattern external rotation from extension to 70° knee flexion and subsequently bicondylar rollback from 70 to 120° knee flexion. Discussion and conclusion: In this study, we evaluated the in vivo motion of PE during deep knee bend motion under weight-bearing condition. About this total knee prosthesis, the mobile-bearing mechanism which advantages over
Introduction. Total knee arthroplasty (TKA) is a consolidated orthopaedic procedure and success of such operation depends on the prosthetic design [1]. Unfortunately, as there is a good survival rate of primary TKA, failures occur for factors concerning the polyethylene composition of the implants, secondary osteolysis, and ultimately loosening of the implants are the usual causes of failure after normal use [2]. Dynamic in vitro testing of the human knee continues to be an area of interest to the orthopaedic biomechanics community. The scope of this work was to assess pre-clinically the wear behaviour of polyethylene knee insert under a realistic stair climbing activity using a displacement knee simulator. Materials & Methods. Four commercial posterior-stabilized
Computer navigation has the potential to revolutionise orthopaedic surgery, although according to the latest 7. th. Annual NJR Report, only 2% of the 5 800 unicompartmental knee replacements (UKRs) performed in 2009 were carried out using ‘image guidance.’ The report also states an average 3-year revision rate for UKRs of 6.5%. Previous NJR data has shown that this figure rises up to 12% for certain types of prosthesis. We suspect that a significant proportion of these revisions are due to failure secondary to component malpositioning. We therefore propose that the use of computer navigation enables a more accurate prosthesis placement, leading to a reduction in the revision rate for early failure secondary to component malpositioning. Our early results of one hundred consecutive computer navigated UKRs are presented and discussed. Ninety-two patients having had one hundred consecutive computer navigated UKRs were reviewed both clinically and radiographically. The Smith & Nephew Accuris
Unicompartmental knee replacement (UKR) is technically challenging, but has the advantage over total knee replacement (TKR) of conserving bone and ligaments, preserving knee range of movement and stability. Computer navigation allows for accurate placement of the components, important for preventing failures secondary to mal-alignment. Evidence suggests an increase in failure rates beyond 3 degrees of coronal mal-alignment. Our previous work has shown superior functional scores in those patients having undergone UKR, when compared with those having had TKR. However, to a certain extent, this is likely to be due to differences in the two cohorts. Those selected for UKRs are likely to be younger, with less advanced and less widespread degenerative disease. It is almost inevitable, therefore, that functional outcomes will be superior. We aimed to compare the functional and radiological outcomes of UKR vs TKR in a more matched population. Ninety-two patients having had one hundred consecutive computer navigated UKRs were reviewed both clinically and radiographically. The Smith & Nephew Accuris