It remains unclear which factors influence overgrowth of the tibia, resulting from the metaphyseal hole created during anterior cruciate ligament (ACL) reconstruction in skeletally immature patients. This study aimed to investigate the effects of growth stimulation by creating a metaphyseal hole in a rabbit model, based on its distance from the physis and type of interposition material. In Experiment 1, 38 skeletally immature male New Zealand white rabbits were randomized into one of four groups: a metaphyseal hole created at 5, 10, or 15 mm distal to the physis of the left proximal tibia with the hole filled with bone wax, or a sham control group. In Experiment 2, after establishing the distance associated with the most overgrowth, a defect was created at 10 mm distal to the physis in 20 additional rabbits, which were randomly assigned to have the defect filled with Tisseel, or be left unfilled. The rabbits were euthanized six weeks postoperatively.Aims
Methods
The aim of this experimental study on New Zealand’s white rabbits
was to investigate the transplantation of autogenous growth plate
cells in order to treat the injured growth plate. They were assessed
in terms of measurements of radiological tibial varus and histological
characteristics. An experimental model of plate growth medial partial resection
of the tibia in 14 New Zealand white rabbits was created. During
this surgical procedure the plate growth cells were collected and
cultured. While the second surgery was being performed, the autologous
cultured growth plate cells were grafted at the right tibia, whereas
the left tibia was used as a control group. Objectives
Methods
Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments. Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis.Objectives
Materials and Methods