Objectives. To assess the clinical and cost-effectiveness of a virtual fracture clinic (VFC) model, and supplement the literature regarding this service as recommended by The National Institute for Health and Care Excellence (NICE) and the British Orthopaedic Association (BOA). Methods. This was a retrospective study including all patients (17 116) referred to fracture clinics in a London District General Hospital from May 2013 to April 2016, using hospital-level data. We used interrupted time series analysis with segmented regression, and direct before-and-after comparison, to study the impact of VFCs introduced in December 2014 on six clinical parameters and on local Clinical Commissioning Group (CCG) spend. Student’s t-tests were used for direct comparison, whilst segmented regression was employed for projection analysis. Results. There were statistically significant reductions in numbers of new patients seen face-to-face (140.4, . sd. 39.6 versus 461.6, . sd. 61.63, p < 0.0001), days to first orthopaedic review (5.2, . sd. 0.66 versus 10.9, . sd. 1.5, p < 0.0001), discharges (33.5, . sd. 3.66 versus 129.2, . sd. 7.36, p < 0.0001) and non-attendees (14.82, . sd. 1.48 versus 60.47, . sd. 2.68, p < 0.0001), in addition to a statistically significant increase in number of patients seen within 72-hours (46.4% 3873 of 8345 versus 5.1% 447 of 8771, p < 0.0001). There was a non-significant increase in consultation time of 1 minute 9 seconds (14 minutes 53 seconds . sd. 106 seconds versus 13 minutes 44 seconds . sd. 128 seconds, p = 0.0878). VFC
“Virtual fracture clinics” have been reported as a safe and effective alternative to the traditional fracture clinic. Robust protocols are used to identify cases that do not require further review, with the remainder triaged to the most appropriate subspecialist at the optimum time for review. The objective of this study was to perform a “top-down” analysis of the cost effectiveness of this virtual fracture clinic pathway. National Health Service financial returns relating to our institution were examined for the time period 2009 to 2014 which spanned the service redesign.Objectives
Methods
This review briefly summarises some of the definitive
studies of articular cartilage by microscopic MRI (µMRI) that were
conducted with the highest spatial resolutions. The article has
four major sections. The first section introduces the cartilage
tissue, MRI and µMRI, and the concept of image contrast in MRI.
The second section describes the characteristic profiles of three
relaxation times (T1, T2 and T1ρ)
and self-diffusion in healthy articular cartilage. The third section
discusses several factors that can influence the visualisation of
articular cartilage and the detection of cartilage lesion by MRI
and µMRI. These factors include image resolution, image analysis
strategies, visualisation of the total tissue, topographical variations
of the tissue properties, surface fibril ambiguity, deformation
of the articular cartilage, and cartilage lesion. The final section
justifies the values of multidisciplinary imaging that correlates
MRI with other technical modalities, such as optical imaging. Rather
than an exhaustive review to capture all activities in the literature,
the studies cited in this review are merely illustrative.