Aims. The first death in the UK caused by COVID-19 occurred on 5 March 2020. We aim to describe the clinical characteristics and outcomes of major trauma and orthopaedic patients admitted in the early COVID-19 era. Methods. A prospective trauma registry was reviewed at a Level 1 Major Trauma Centre. We divided patients into Group A, 40 days prior to 5 March 2020, and into Group B, 40 days after. Results. A total of 657 consecutive trauma and orthopaedic patients were identified with a mean age of 55 years (8 to 98; standard deviation (SD) 22.52) and 393 (59.8%) were males. In all, 344 (approximately 50%) of admissions were major trauma. Group A had 421 patients, decreasing to 236 patients in Group B (36%). Mechanism of injury (MOI) was commonly a fall in 351 (52.4%) patients, but road traffic accidents (RTAs) increased from 56 (13.3%) in group A to 51 (21.6%) in group B (p = 0.030). ICU admissions decreased from 26 (6.2%) in group A to 5 (2.1%) in group B. Overall, 39 patients tested positive for COVID-19 with mean age of 73 years (28 to 98; SD 17.99) and 22 (56.4%) males. Common symptoms were dyspnoea, dry cough, and pyrexia. Of these patients, 27 (69.2%) were nosocomial infections and two (5.1%) of these patients required intensive care unit (ICU) admission with 8/39 mortality (20.5%). Of the patients who died, 50% were older and had underlying comorbidities (hypertension and
Aims. The safe resumption of elective orthopaedic surgery following the peak of the COVID-19 pandemic remains a significant challenge. A number of institutions have developed a COVID-free pathway for elective surgery patients in order to minimize the risk of viral transmission. The aim of this study is to identify the perioperative viral transmission rate in elective orthopaedic patients following the restart of elective surgery. Methods. This is a prospective study of 121 patients who underwent elective orthopaedic procedures through a COVID-free pathway. All patients underwent a 14-day period of self-isolation, had a negative COVID-19 test within 72 hours of surgery, and underwent surgery at a COVID-free site. Baseline patient characteristics were recorded including age, American Society of Anaesthesiologists (ASA) grade, body mass index (BMI), procedure, and admission type. Patients were contacted 14 days following discharge to determine if they had had a positive COVID-19 test (COVID-confirmed) or developed symptoms consistent with COVID-19 (COVID-19-presumed). Results. The study included 74 females (61.2%) and 47 males (38.8%) with a mean age of 52.3 years ± 17.6 years (18 to 83 years). The ASA grade was grade I in 26 patients (21.5%), grade II in 70 patients (57.9%), grade III in 24 patients (19.8%), and grade IV in one patient (0.8%). A total of 18 patients (14.9%) had underlying
Aims. The new COVID-19 variant was reported by the authorities of the UK to the World Health Organization (WHO) on 14 December 2020. We aim to describe the clinical characteristics and nosocomial infection rates in major trauma and orthopaedic patients comparing the first and second wave of COVID-19 infection. Methods. A retrospective analysis of a prospectively collected trauma database was reviewed at a level 1 major trauma centre from 1 December 2020 to 18 February 2021 looking at demographics, clinical characteristics, and nosocomial infections and compared to our previously published first wave data (26 January 2020 to 14 April 2020). Results. From 1 December 2020 to 18 February 2021, 522 major trauma patients were identified with a mean age of 54.6 years, and 53.4% (n = 279) were male. Common admissions were falls (318; 60.9%) and road traffic accidents (RTAs; 71 (13.6%); 262 of these patients (50.2%) had surgery. In all, 75 patients (14.4%) tested positive for COVID-19, of which 51 (68%) were nosocomial. Surgery on COVID-19 patients increased to 46 (61.3%) in the second wave compared to 13 (33.3%) in the first wave (p = 0.005). ICU admissions of patients with COVID-19 infection increased from two (5.1%) to 16 (20.5%), respectively (p = 0.024). Second wave mortality was 6.1% (n = 32) compared to first wave of 4.7% (n = 31).
This study aimed to investigate the risk of postoperative complications in COVID-19-positive patients undergoing common orthopaedic procedures. Using the National Surgical Quality Improvement Programme (NSQIP) database, patients who underwent common orthopaedic surgery procedures from 1 January to 31 December 2021 were extracted. Patient preoperative COVID-19 status, demographics, comorbidities, type of surgery, and postoperative complications were analyzed. Propensity score matching was conducted between COVID-19-positive and -negative patients. Multivariable regression was then performed to identify both patient and provider risk factors independently associated with the occurrence of 30-day postoperative adverse events.Aims
Methods
Deprivation underpins many societal and health inequalities. COVID-19 has exacerbated these disparities, with access to planned care falling greatest in the most deprived areas of the UK during 2020. This study aimed to identify the impact of deprivation on patients on growing waiting lists for planned care. Questionnaires were sent to orthopaedic waiting list patients at the start of the UK’s first COVID-19 lockdown to capture key quantitative and qualitative aspects of patients’ health. A total of 888 respondents were divided into quintiles, with sampling stratified based on the Index of Multiple Deprivation (IMD); level 1 represented the ‘most deprived’ cohort and level 5 the ‘least deprived’.Aims
Methods
The timing of when to remove a circular frame is crucial; early removal results in refracture or deformity, while late removal increases the patient morbidity and delay in return to work. This study was designed to assess the effectiveness of a staged reloading protocol. We report the incidence of mechanical failure following both single-stage and two stage reloading protocols and analyze the associated risk factors. We identified consecutive patients from our departmental database. Both trauma and elective cases were included, of all ages, frame types, and pathologies who underwent circular frame treatment. Our protocol is either a single-stage or two-stage process implemented by defunctioning the frame, in order to progressively increase the weightbearing load through the bone, and promote full loading prior to frame removal. Before progression, through the process we monitor patients for any increase in pain and assess radiographs for deformity or refracture.Aims
Methods