Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
The Bone & Joint Journal
Vol. 97-B, Issue 10 | Pages 1390 - 1394
1 Oct 2015
Todd NV

There is no universally agreed definition of cauda equina syndrome (CES). Clinical signs of CES including direct rectal examination (DRE) do not reliably correlate with cauda equina (CE) compression on MRI. Clinical assessment only becomes reliable if there are symptoms/signs of late, often irreversible, CES. The only reliable way of including or excluding CES is to perform MRI on all patients with suspected CES. If the diagnosis is being considered, MRI should ideally be performed locally in the District General Hospitals within one hour of the question being raised irrespective of the hour or the day. Patients with symptoms and signs of CES and MRI confirmed CE compression should be referred to the local spinal service for emergency surgery. CES can be subdivided by the degree of neurological deficit (bilateral radiculopathy, incomplete CES or CES with retention of urine) and also by time to surgical treatment (12, 24, 48 or 72 hour). There is increasing understanding that damage to the cauda equina nerve roots occurs in a continuous and progressive fashion which implies that there are no safe time or deficit thresholds. Neurological deterioration can occur rapidly and is often associated with longterm poor outcomes. It is not possible to predict which patients with a large central disc prolapse compressing the CE nerve roots are going to deteriorate neurologically nor how rapidly. Consensus guidelines from the Society of British Neurological Surgeons and British Association of Spinal Surgeons recommend decompressive surgery as soon as practically possible which for many patients will be urgent/emergency surgery at any hour of the day or night. . Cite this article: Bone Joint J 2015;97-B:1390–4


Bone & Joint Open
Vol. 1, Issue 3 | Pages 19 - 28
3 Mar 2020
Tsirikos AI Roberts SB Bhatti E

Aims. Severe spinal deformity in growing patients often requires surgical management. We describe the incidence of spinal deformity surgery in a National Health Service. Methods. Descriptive study of prospectively collected data. Clinical data of all patients undergoing surgery for spinal deformity between 2005 and 2018 was collected, compared to the demographics of the national population, and analyzed by underlying aetiology. Results. Our cohort comprised 2,205 patients; this represents an incidence of 14 per 100,000 individuals among the national population aged between zero and 18 years. There was an increase in mean annual incidence of spinal deformity surgery across the study period from 9.6 (7.2 to 11.7) per 100,000 individuals in 2005 to 2008, to 17.9 (16.1 to 21.5) per 100,000 individuals in 2015 to 2018 (p = 0.001). The most common cause of spinal deformity was idiopathic scoliosis accounting for 56.7% of patients. There was an increase in mean incidence of surgery for adolescent idiopathic scoliosis (AIS) (from 4.4 (3.1 to 5.9) to 9.8 (9.1 to 10.8) per 100,000 individuals; p < 0.001), juvenile idiopathic scoliosis (JIS) (from 0.2 (0.1 to 0.4) to one (0.5 to 1.3) per 100,000 individuals; p = 0.009), syndromic scoliosis (from 0.7 (0.3 to 0.9) to 1.7 (1.2 to 2.4) per 100,000 individuals; p = 0.044), Scheuermann’s kyphosis (SK) (from 0.2 (0 to 0.7) to 1.2 (1.1 to 1.3) per 100,000 individuals; p = 0.001), and scoliosis with intraspinal abnormalities (from 0.04 (0 to 0.08) to 0.6 (0.5 to 0.8) per 100,000 individuals; p = 0.008) across the study period. There was an increase in mean number of posterior spinal fusions performed each year from mean 84.5 (51 to 108) in 2005 to 2008 to 182.5 (170 to 210) in 2015 to 2018 (p < 0.001) and a reduction in mean number of growing rod procedures from 45.5 (18 to 66) in 2005 to 2008 to 16.8 (11 to 24) in 2015 to 2018 (p = 0.046). Conclusion. The incidence of patients with spinal deformity undergoing surgery increased from 2005 to 2018. This was largely attributable to an increase in surgical patients with adolescent idiopathic scoliosis. Paediatric spinal deformity was increasingly treated by posterior spinal fusion, coinciding with a decrease in the number of growing rod procedures. These results can be used to plan paediatric spinal deformity services but also evaluate preventative strategies and research, including population screening


Bone & Joint Open
Vol. 1, Issue 7 | Pages 405 - 414
15 Jul 2020
Abdelaal A Munigangaiah S Trivedi J Davidson N

Aims. Magnetically controlled growing rods (MCGR) have been gaining popularity in the management of early-onset scoliosis (EOS) over the past decade. We present our experience with the first 44 MCGR consecutive cases treated at our institution. Methods. This is a retrospective review of consecutive cases of MCGR performed in our institution between 2012 and 2018. This cohort consisted of 44 children (25 females and 19 males), with a mean age of 7.9 years (3.7 to 13.6). There were 41 primary cases and three revisions from other rod systems. The majority (38 children) had dual rods. The group represents a mixed aetiology including idiopathic (20), neuromuscular (13), syndromic (9), and congenital (2). The mean follow-up was 4.1 years, with a minimum of two years. Nine children graduated to definitive fusion. We evaluated radiological parameters of deformity correction (Cobb angle), and spinal growth (T1-T12 and T1-S1 heights), as well as complications during the course of treatment. Results. The mean Cobb angles pre-operatively, postoperatively, and at last follow-up were 70° (53 to 103), 35° (15 to 71) and 39° (15 to 65) respectively (p < 0.001). Further, there was a mean of 14° (-6 to 27) of additional Cobb angle correction upon graduation from MCGR to definitive fusion. Both T1-T12 and T1-S1 showed significant increase in heights of 27 mm and 45 mm respectively at last follow-up (p < 0.001). Ten children (23%) developed 18 complications requiring 21 unplanned operations. Independent risk factors for developing a complication were single rod constructs and previous revision surgery. Conclusion. MCGR has the benefit of avoiding multiple surgeries, and is an effective tool in treatment of early-onset scoliosis. It also maintains the flexibility of the spine, allowing further correction at the time of definitive fusion. Cite this article: Bone Joint Open 2020;1-7:405–414


The Bone & Joint Journal
Vol. 105-B, Issue 4 | Pages 400 - 411
15 Mar 2023
Hosman AJF Barbagallo G van Middendorp JJ

Aims

The aim of this study was to determine whether early surgical treatment results in better neurological recovery 12 months after injury than late surgical treatment in patients with acute traumatic spinal cord injury (tSCI).

Methods

Patients with tSCI requiring surgical spinal decompression presenting to 17 centres in Europe were recruited. Depending on the timing of decompression, patients were divided into early (≤ 12 hours after injury) and late (> 12 hours and < 14 days after injury) groups. The American Spinal Injury Association neurological (ASIA) examination was performed at baseline (after injury but before decompression) and at 12 months. The primary endpoint was the change in Lower Extremity Motor Score (LEMS) from baseline to 12 months.


Bone & Joint Open
Vol. 5, Issue 9 | Pages 768 - 775
18 Sep 2024
Chen K Dong X Lu Y Zhang J Liu X Jia L Guo Y Chen X

Aims

Surgical approaches to cervical ossification of the posterior longitudinal ligament (OPLL) remain controversial. The purpose of the present study was to analyze and compare the long-term neurological recovery following anterior decompression with fusion (ADF) and posterior laminectomy and fusion with bone graft and internal fixation (PLF) based on > ten-year follow-up outcomes in a single centre.

Methods

Included in this retrospective cohort study were 48 patients (12 females; mean age 55.79 years (SD 8.94)) who were diagnosed with cervical OPLL, received treatment in our centre, and were followed up for 10.22 to 15.25 years. Of them, 24 patients (six females; mean age 52.88 years (SD 8.79)) received ADF, and the other 24 patients (five females; mean age 56.25 years (SD 9.44)) received PLF. Clinical data including age, sex, and the OPLL canal-occupying ratio were analyzed and compared. The primary outcome was Japanese Orthopaedic Association (JOA) score, and the secondary outcome was visual analogue scale neck pain.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 245 - 255
3 Apr 2023
Ryu S So J Ha Y Kuh S Chin D Kim K Cho Y Kim K

Aims

To determine the major risk factors for unplanned reoperations (UROs) following corrective surgery for adult spinal deformity (ASD) and their interactions, using machine learning-based prediction algorithms and game theory.

Methods

Patients who underwent surgery for ASD, with a minimum of two-year follow-up, were retrospectively reviewed. In total, 210 patients were included and randomly allocated into training (70% of the sample size) and test (the remaining 30%) sets to develop the machine learning algorithm. Risk factors were included in the analysis, along with clinical characteristics and parameters acquired through diagnostic radiology.


Bone & Joint Open
Vol. 2, Issue 12 | Pages 1096 - 1101
23 Dec 2021
Mohammed R Shah P Durst A Mathai NJ Budu A Woodfield J Marjoram T Sewell M

Aims

With resumption of elective spine surgery services in the UK following the first wave of the COVID-19 pandemic, we conducted a multicentre British Association of Spine Surgeons (BASS) collaborative study to examine the complications and deaths due to COVID-19 at the recovery phase of the pandemic. The aim was to analyze the safety of elective spinal surgery during the pandemic.

Methods

A prospective observational study was conducted from eight spinal centres for the first month of operating following restoration of elective spine surgery in each individual unit. Primary outcome measure was the 30-day postoperative COVID-19 infection rate. Secondary outcomes analyzed were the 30-day mortality rate, surgical adverse events, medical complications, and length of inpatient stay.


Aims

Psychoeducative prehabilitation to optimize surgical outcomes is relatively novel in spinal fusion surgery and, like most rehabilitation treatments, they are rarely well specified. Spinal fusion patients experience anxieties perioperatively about pain and immobility, which might prolong hospital length of stay (LOS). The aim of this prospective cohort study was to determine if a Preoperative Spinal Education (POSE) programme, specified using the Rehabilitation Treatment Specification System (RTSS) and designed to normalize expectations and reduce anxieties, was safe and reduced LOS.

Methods

POSE was offered to 150 prospective patients over ten months (December 2018 to November 2019) Some chose to attend (Attend-POSE) and some did not attend (DNA-POSE). A third independent retrospective group of 150 patients (mean age 57.9 years (SD 14.8), 50.6% female) received surgery prior to POSE (pre-POSE). POSE consisted of an in-person 60-minute education with accompanying literature, specified using the RTSS as psychoeducative treatment components designed to optimize cognitive/affective representations of thoughts/feelings, and normalize anxieties about surgery and its aftermath. Across-group age, sex, median LOS, perioperative complications, and readmission rates were assessed using appropriate statistical tests.


The Bone & Joint Journal
Vol. 102-B, Issue 6 | Pages 671 - 676
1 Jun 2020
Giorgi PD Villa F Gallazzi E Debernardi A Schirò GR Crisà FM Talamonti G D’Aliberti G

Aims

The current pandemic caused by COVID-19 is the biggest challenge for national health systems for a century. While most medical resources are allocated to treat COVID-19 patients, several non-COVID-19 medical emergencies still need to be treated, including vertebral fractures and spinal cord compression. The aim of this paper is to report the early experience and an organizational protocol for emergency spinal surgery currently being used in a large metropolitan area by an integrated team of orthopaedic surgeons and neurosurgeons.

Methods

An organizational model is presented based on case centralization in hub hospitals and early management of surgical cases to reduce hospital stay. Data from all the patients admitted for emergency spinal surgery from the beginning of the outbreak were prospectively collected and compared to data from patients admitted for the same reason in the same time span in the previous year, and treated by the same integrated team.


Bone & Joint Research
Vol. 7, Issue 1 | Pages 28 - 35
1 Jan 2018
Huang H Nightingale RW Dang ABC

Objectives

Loss of motion following spine segment fusion results in increased strain in the adjacent motion segments. However, to date, studies on the biomechanics of the cervical spine have not assessed the role of coupled motions in the lumbar spine. Accordingly, we investigated the biomechanics of the cervical spine following cervical fusion and lumbar fusion during simulated whiplash using a whole-human finite element (FE) model to simulate coupled motions of the spine.

Methods

A previously validated FE model of the human body in the driver-occupant position was used to investigate cervical hyperextension injury. The cervical spine was subjected to simulated whiplash exposure in accordance with Euro NCAP (the European New Car Assessment Programme) testing using the whole human FE model. The coupled motions between the cervical spine and lumbar spine were assessed by evaluating the biomechanical effects of simulated cervical fusion and lumbar fusion.


Bone & Joint 360
Vol. 3, Issue 4 | Pages 41 - 44
1 Aug 2014
Shah N Matthews S

Whiplash injury is surrounded by controversy in both the medical and legal world. The debate on whether it is either a potentially serious medical condition or a social problem is ongoing. This paper briefly examines a selection of studies on low velocity whiplash injury (LVWI) and whiplash associated disorder (WAD) and touches upon the pathophysiological and epidemiological considerations, cultural and geographical differences and the effect of litigation on chronicity. The study concludes that the evidence for significant physical injury after LVWI is poor, and if significant disability is present after such injury, it will have to be explained in terms of psychosocial factors.


Bone & Joint 360
Vol. 3, Issue 5 | Pages 39 - 40
1 Oct 2014
Foy MA