It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.Aims
Methods
It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA. In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.Aims
Methods
The aim of this study was to determine whether patients with
metal-on-metal (MoM) arthroplasties of the hip have an increased
risk of cardiac failure compared with those with alternative types
of arthroplasties (non-MoM). A linkage study between the National Joint Registry, Hospital
Episodes Statistics and records of the Office for National Statistics
on deaths was undertaken. Patients who underwent elective total
hip arthroplasty between January 2003 and December 2014 with no
past history of cardiac failure were included and stratified as
having either a MoM (n = 53 529) or a non-MoM (n = 482 247) arthroplasty.
The primary outcome measure was the time to an admission to hospital
for cardiac failure or death. Analysis was carried out using data
from all patients and from those matched by propensity score.Aims
Patients and Methods
To determine ten-year failure rates following 36 mm metal-on-metal
(MoM) Pinnacle total hip arthroplasty (THA), and identify predictors
of failure. We retrospectively assessed a single-centre cohort of 569 primary
36 mm MoM Pinnacle THAs (all Corail stems) followed up since 2012
according to Medicines and Healthcare Products Regulation Agency
recommendations. All-cause failure rates (all-cause revision, and
non-revised cross-sectional imaging failures) were calculated, with predictors
for failure identified using multivariable Cox regression.Aims
Patients and Methods
We investigated whether blood metal ion levels could effectively
identify patients with bilateral Birmingham Hip Resurfacing (BHR)
implants who have adverse reactions to metal debris (ARMD). Metal ion levels in whole blood were measured in 185 patients
with bilateral BHRs. Patients were divided into those with ARMD
who either had undergone a revision for ARMD or had ARMD on imaging
(n = 30), and those without ARMD (n = 155). Receiver operating characteristic
analysis was used to determine the optimal thresholds of blood metal
ion levels for identifying patients with ARMD.Aims
Patients and Methods
In total hip arthroplasty (THA), the cementless, tapered-wedge stem design contributes to achieving initial stability and providing optimal load transfer in the proximal femur. However, loading conditions on the femur following THA are also influenced by femoral structure. Therefore, we determined the effects of tapered-wedge stems on the load distribution of the femur using subject-specific finite element models of femurs with various canal shapes. We studied 20 femurs, including seven champagne flute-type femurs, five stovepipe-type femurs, and eight intermediate-type femurs, in patients who had undergone cementless THA using the Accolade TMZF stem at our institution. Subject–specific finite element (FE) models of pre- and post-operative femurs with stems were constructed and used to perform FE analyses (FEAs) to simulate single-leg stance. FEA predictions were compared with changes in bone mineral density (BMD) measured for each patient during the first post-operative year.Objectives
Patients and Methods