Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Bone & Joint Open
Vol. 4, Issue 6 | Pages 399 - 407
1 Jun 2023
Yeramosu T Ahmad W Satpathy J Farrar JM Golladay GJ Patel NK

Aims. To identify variables independently associated with same-day discharge (SDD) of patients following revision total knee arthroplasty (rTKA) and to develop machine learning algorithms to predict suitable candidates for outpatient rTKA. Methods. Data were obtained from the American College of Surgeons National Quality Improvement Programme (ACS-NSQIP) database from the years 2018 to 2020. Patients with elective, unilateral rTKA procedures and a total hospital length of stay between zero and four days were included. Demographic, preoperative, and intraoperative variables were analyzed. A multivariable logistic regression (MLR) model and various machine learning techniques were compared using area under the curve (AUC), calibration, and decision curve analysis. Important and significant variables were identified from the models. Results. Of the 5,600 patients included in this study, 342 (6.1%) underwent SDD. The random forest (RF) model performed the best overall, with an internally validated AUC of 0.810. The ten crucial factors favoring SDD in the RF model include operating time, anaesthesia type, age, BMI, American Society of Anesthesiologists grade, race, history of diabetes, rTKA type, sex, and smoking status. Eight of these variables were also found to be significant in the MLR model. Conclusion. The RF model displayed excellent accuracy and identified clinically important variables for determining candidates for SDD following rTKA. Machine learning techniques such as RF will allow clinicians to accurately risk-stratify their patients preoperatively, in order to optimize resources and improve patient outcomes. Cite this article: Bone Jt Open 2023;4(6):399–407


Bone & Joint Research
Vol. 13, Issue 2 | Pages 66 - 82
5 Feb 2024
Zhao D Zeng L Liang G Luo M Pan J Dou Y Lin F Huang H Yang W Liu J

Aims

This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA.

Methods

Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.


Bone & Joint Open
Vol. 4, Issue 5 | Pages 338 - 356
10 May 2023
Belt M Robben B Smolders JMH Schreurs BW Hannink G Smulders K

Aims

To map literature on prognostic factors related to outcomes of revision total knee arthroplasty (rTKA), to identify extensively studied factors and to guide future research into what domains need further exploration.

Methods

We performed a systematic literature search in MEDLINE, Embase, and Web of Science. The search string included multiple synonyms of the following keywords: "revision TKA", "outcome" and "prognostic factor". We searched for studies assessing the association between at least one prognostic factor and at least one outcome measure after rTKA surgery. Data on sample size, study design, prognostic factors, outcomes, and the direction of the association was extracted and included in an evidence map.