Advertisement for orthosearch.org.uk
Results 1 - 20 of 34
Results per page:
Bone & Joint Open
Vol. 5, Issue 1 | Pages 46 - 52
19 Jan 2024
Assink N ten Duis K de Vries JPM Witjes MJH Kraeima J Doornberg JN IJpma FFA

Aims. Proper preoperative planning benefits fracture reduction, fixation, and stability in tibial plateau fracture surgery. We developed and clinically implemented a novel workflow for 3D surgical planning including patient-specific drilling guides in tibial plateau fracture surgery. Methods. A prospective feasibility study was performed in which consecutive tibial plateau fracture patients were treated with 3D surgical planning, including patient-specific drilling guides applied to standard off-the-shelf plates. A postoperative CT scan was obtained to assess whether the screw directions, screw lengths, and plate position were performed according the preoperative planning. Quality of the fracture reduction was assessed by measuring residual intra-articular incongruence (maximum gap and step-off) and compared to a historical matched control group. Results. A total of 15 patients were treated with 3D surgical planning in which 83 screws were placed by using drilling guides. The median deviation of the achieved screw trajectory from the planned trajectory was 3.4° (interquartile range (IQR) 2.5 to 5.4) and the difference in entry points (i.e. plate position) was 3.0 mm (IQR 2.0 to 5.5) compared to the 3D preoperative planning. The length of 72 screws (86.7%) were according to the planning. Compared to the historical cohort, 3D-guided surgery showed an improved surgical reduction in terms of median gap (3.1 vs 4.7 mm; p = 0.126) and step-off (2.9 vs 4.0 mm; p = 0.026). Conclusion. The use of 3D surgical planning including drilling guides was feasible, and facilitated accurate screw directions, screw lengths, and plate positioning. Moreover, the personalized approach improved fracture reduction as compared to a historical cohort. Cite this article: Bone Jt Open 2024;5(1):46–52


Bone & Joint Research
Vol. 8, Issue 8 | Pages 357 - 366
1 Aug 2019
Zhang B Sun H Zhan Y He Q Zhu Y Wang Y Luo C

Objectives. CT-based three-column classification (TCC) has been widely used in the treatment of tibial plateau fractures (TPFs). In its updated version (updated three-column concept, uTCC), a fracture morphology-based injury mechanism was proposed for effective treatment guidance. In this study, the injury mechanism of TPFs is further explained, and its inter- and intraobserver reliability is evaluated to perfect the uTCC. Methods. The radiological images of 90 consecutive TPF patients were collected. A total of 47 men (52.2%) and 43 women (47.8%) with a mean age of 49.8 years (. sd. 12.4; 17 to 77) were enrolled in our study. Among them, 57 fractures were on the left side (63.3%) and 33 were on the right side (36.7%); no bilateral fracture existed. Four observers were chosen to classify or estimate independently these randomized cases according to the Schatzker classification, TCC, and injury mechanism. With two rounds of evaluation, the kappa values were calculated to estimate the inter- and intrareliability. Results. The overall inter- and intraobserver agreements of the injury mechanism were substantial (κ. inter. = 0.699, κ. intra. = 0.749, respectively). The initial position and the force direction, which are two components of the injury mechanism, had substantial agreement for both inter-reliability or intrareliability. The inter- and intraobserver agreements were lower in high-energy fractures (Schatzker types IV to VI; κ. inter. = 0.605, κ. intra. = 0.721) compared with low-energy fractures (Schatzker types I to III; κ. inter. = 0.81, κ. intra. = 0.832). The inter- and intraobserver agreements were relatively higher in one-column fractures (κ. inter. = 0.759, κ. intra. = 0.801) compared with two-column and three-column fractures. Conclusion. The complete theory of injury mechanism of TPFs was first put forward to make the TCC consummate. It demonstrates substantial inter- and intraobserver agreement generally. Furthermore, the injury mechanism can be promoted clinically. Cite this article: B-B. Zhang, H. Sun, Y. Zhan, Q-F. He, Y. Zhu, Y-K. Wang, C-F. Luo. Reliability and repeatability of tibial plateau fracture assessment with an injury mechanism-based concept. Bone Joint Res 2019;8:357–366. DOI: 10.1302/2046-3758.88.BJR-2018-0331.R1


Bone & Joint Research
Vol. 9, Issue 6 | Pages 258 - 267
1 Jun 2020
Yao X Zhou K Lv B Wang L Xie J Fu X Yuan J Zhang Y

Aims. Tibial plateau fractures (TPFs) are complex injuries around the knee caused by high- or low-energy trauma. In the present study, we aimed to define the distribution and frequency of TPF lines using a 3D mapping technique and analyze the rationalization of divisions employed by frequently used classifications. Methods. In total, 759 adult patients with 766 affected knees were retrospectively reviewed. The TPF fragments on CT were multiplanar reconstructed, and virtually reduced to match a 3D model of the proximal tibia. 3D heat mapping was subsequently created by graphically superimposing all fracture lines onto a tibia template. Results. The cohort included 405 (53.4%) cases with left knee injuries, 347 (45.7%) cases with right knee injuries, and seven (0.9%) cases with bilateral injuries. On mapping, the hot zones of the fracture lines were mainly concentrated around the anterior cruciate ligament insertion, posterior cruciate ligament insertion, and the inner part of the lateral condyle that extended to the junctional zone between Gerdy’s tubercle and the tibial tubercle. Moreover, the cold zones were scattered in the posteromedial fragment, superior tibiofibular syndesmosis, Gerdy’s tubercle, and tibial tubercle. TPFs with different Orthopaedic Trauma Association/AO Foundation (OTA/AO) subtypes showed peculiar characteristics. Conclusion. TPFs occurred more frequently in the lateral and intermedial column than in the medial column. Fracture lines of tibial plateau occur frequently in the transition zone with marked changes in cortical thickness. According to 3D mapping, the four-column and nine-segment classification had a high degree of matching as compared to the frequently used classifications. Cite this article: Bone Joint Res 2020;9(6):258–267


Aims. Our objective was to conduct a systematic review and meta-analysis, to establish whether differences arise in clinical outcomes between autologous and synthetic bone grafts in the operative management of tibial plateau fractures. Methods. A structured search of MEDLINE, EMBASE, the online archives of Bone & Joint Publishing, and CENTRAL databases from inception until 28 July 2021 was performed. Randomized, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture nonunion, or chondral defects were excluded. Outcome data were assessed using the Risk of Bias 2 (ROB2) framework and synthesized in random-effect meta-analysis. The Preferred Reported Items for Systematic Review and Meta-Analyses guidance was followed throughout. Results. Six studies involving 353 fractures were identified from 3,078 records. Following ROB2 assessment, five studies (representing 338 fractures) were appropriate for meta-analysis. Primary outcomes showed non-significant reductions in articular depression at immediate postoperative (mean difference -0.45 mm, p = 0.25, 95%confidence interval (CI) -1.21 to 0.31, I. 2. = 0%) and long-term (> six months, standard mean difference -0.56, p = 0.09, 95% CI -1.20 to 0.08, I. 2. = 73%) follow-up in synthetic bone grafts. Secondary outcomes included mechanical alignment, limb functionality, and defect site pain at long-term follow-up, perioperative blood loss, duration of surgery, occurrence of surgical site infections, and secondary surgery. Mean blood loss was lower (90.08 ml, p < 0.001, 95% CI 41.49 to 138.67) and surgery was shorter (16.17 minutes, p = 0.04, 95% CI 0.39 to 31.94) in synthetic treatment groups. All other secondary measures were statistically comparable. Conclusion. All studies reported similar methodologies and patient populations; however, imprecision may have arisen through performance variation. These findings supersede previous literature and indicate that, despite perceived biological advantages, autologous bone grafting does not demonstrate superiority to synthetic grafts. When selecting a void filler, surgeons should consider patient comorbidity, environmental and societal factors in provision, and perioperative and postoperative care provision. Cite this article: Bone Jt Open 2022;3(3):218–228


Bone & Joint Open
Vol. 4, Issue 4 | Pages 273 - 282
20 Apr 2023
Gupta S Yapp LZ Sadczuk D MacDonald DJ Clement ND White TO Keating JF Scott CEH

Aims. To investigate health-related quality of life (HRQoL) of older adults (aged ≥ 60 years) after tibial plateau fracture (TPF) compared to preinjury and population matched values, and what aspects of treatment were most important to patients. Methods. We undertook a retrospective, case-control study of 67 patients at mean 3.5 years (SD 1.3; 1.3 to 6.1) after TPF (47 patients underwent fixation, and 20 nonoperative management). Patients completed EuroQol five-dimension three-level (EQ-5D-3L) questionnaire, Lower Limb Function Scale (LEFS), and Oxford Knee Scores (OKS) for current and recalled prefracture status. Propensity score matching for age, sex, and deprivation in a 1:5 ratio was performed using patient level data from the Health Survey for England to obtain a control group for HRQoL comparison. The primary outcome was the difference in actual (TPF cohort) and expected (matched control) EQ-5D-3L score after TPF. Results. TPF patients had a significantly worse EQ-5D-3L utility (mean difference (MD) 0.09, 95% confidence interval (CI) 0.00 to 0.16; p < 0.001) following their injury compared to matched controls, and had a significant deterioration (MD 0.140, 95% CI 0 to 0.309; p < 0.001) relative to their preoperative status. TPF patients had significantly greater pre-fracture EQ-5D-3L scores compared to controls (p = 0.003), specifically in mobility and pain/discomfort domains. A decline in EQ-5D-3L greater than the minimal important change of 0.105 was present in 36/67 TPF patients (53.7%). Following TPF, OKS (MD -7; interquartile range (IQR) -1 to -15) and LEFS (MD -10; IQR -2 to -26) declined significantly (p < 0.001) from pre-fracture levels. Of the 12 elements of fracture care assessed, the most important to patients were getting back to their own home, having a stable knee, and returning to normal function. Conclusion. TPFs in older adults were associated with a clinically significant deterioration in HRQoL compared to preinjury level and age, sex, and deprivation matched controls for both undisplaced fractures managed nonoperatively and displaced or unstable fractures managed with internal fixation. Cite this article: Bone Jt Open 2023;4(4):273–282


Bone & Joint Research
Vol. 10, Issue 7 | Pages 380 - 387
5 Jul 2021
Shen J Sun D Fu J Wang S Wang X Xie Z

Aims. In contrast to operations performed for other fractures, there is a high incidence rate of surgical site infection (SSI) post-open reduction and internal fixation (ORIF) done for tibial plateau fractures (TPFs). This study investigates the effect of induced membrane technique combined with internal fixation for managing SSI in TPF patients who underwent ORIF. Methods. From April 2013 to May 2017, 46 consecutive patients with SSI post-ORIF for TPFs were managed in our centre with an induced membrane technique. Of these, 35 patients were included for this study, with data analyzed in a retrospective manner. Results. All participants were monitored for a mean of 36 months (24 to 62). None were subjected to amputations. A total of 21 patients underwent two-stage surgeries (Group A), with 14 patients who did not receive second-stage surgery (Group B). Group A did not experience infection recurrence, and no implant or cement spacer loosening was noted in Group B for at least 24 months of follow-up. No significant difference was noted in the Lower Extremity Functional Scale (LEFS) and the Hospital for Special Surgery Knee Score (HSS) between the two groups. The clinical healing time was significantly shorter in Group B (p<0.001). Those with longer duration of infection had poorer functional status (p<0.001). Conclusion. Management of SSI post-ORIF for TPF with induced membrane technique combined with internal fixation represents a feasible mode of treatment with satisfactory outcomes in terms of infection control and functional recovery. Cite this article: Bone Joint Res 2021;10(7):380–387


Bone & Joint 360
Vol. 4, Issue 4 | Pages 27 - 29
1 Aug 2015

The August 2015 Trauma Roundup. 360 . looks at: Thromboprophylaxis not required in lower limb fractures; Subclinical thyroid dysfunction and fracture risk: moving the boundaries in fracture; Posterior wall fractures refined; Neurological injury and acetabular fracture surgery; Posterior tibial plateau fixation; Tibial plateau fractures in the longer term; Comprehensive orthogeriatric care and hip fracture; Compartment syndrome: in the eye of the beholder?


Bone & Joint 360
Vol. 3, Issue 2 | Pages 9 - 12
1 Apr 2014

The April 2014 Knee Roundup. 360 . looks at: mobile compression as good as chemical thromboprophylaxis; patellar injury with MIS knee surgery; tibial plateau fracture results not as good as we thought; back and knee pain; metaphyseal sleeves may be the answer in revision knee replacement; oral tranexamic acid; gentamycin alone in antibiotic spacers; and whether the jury is still out on unloader braces


Bone & Joint 360
Vol. 3, Issue 6 | Pages 23 - 26
1 Dec 2014

The December 2014 Trauma Roundup. 360 . looks at: infection and temporising external fixation; Vitamin C in distal radial fractures; DRAFFT: Cheap and cheerful Kirschner wires win out; femoral neck fractures not as stable as they might be; displaced sacral fractures give high morbidity and mortality; sanders and calcaneal fractures: a 20-year experience; bleeding and pelvic fractures; optimising timing for acetabular fractures; and tibial plateau fractures


Bone & Joint 360
Vol. 4, Issue 6 | Pages 21 - 23
1 Dec 2015

The December 2015 Trauma Roundup. 360 . looks at: Delay to surgery in hip fracture; Hexapod fixators in the management of hypertrophic tibial nonunions; Thromboembolism after nailing pathological fractures; Tibial plateau fracture patterns under the spotlight; The health economic effects of long bone nonunion; Adverse outcomes in trauma; The sacral screw in children; Treating the contralateral SUFE


Bone & Joint 360
Vol. 2, Issue 4 | Pages 22 - 24
1 Aug 2013

The August 2013 Trauma Roundup. 360 . looks at: reverse oblique fractures do better with a cephalomedullary device; locking screws confer no advantage in tibial plateau fractures; it’s all about the radius of curvature; radius of curvature revisited; radial head replacement in complex elbow reconstruction; stem cells in early fracture haematoma; heterotrophic ossification in forearms; and Boston in perspective


Bone & Joint Open
Vol. 3, Issue 12 | Pages 991 - 997
23 Dec 2022
McPherson EJ Stavrakis AI Chowdhry M Curtin NL Dipane MV Crawford BM

Aims

Large acetabular bone defects encountered in revision total hip arthroplasty (THA) are challenging to restore. Metal constructs for structural support are combined with bone graft materials for restoration. Autograft is restricted due to limited volume, and allogenic grafts have downsides including cost, availability, and operative processing. Bone graft substitutes (BGS) are an attractive alternative if they can demonstrate positive remodelling. One potential product is a biphasic injectable mixture (Cerament) that combines a fast-resorbing material (calcium sulphate) with the highly osteoconductive material hydroxyapatite. This study reviews the application of this biomaterial in large acetabular defects.

Methods

We performed a retrospective review at a single institution of patients undergoing revision THA by a single surgeon. We identified 49 consecutive patients with large acetabular defects where the biphasic BGS was applied, with no other products added to the BGS. After placement of metallic acetabular implants, the BGS was injected into the remaining bone defects surrounding the new implants. Patients were followed and monitored for functional outcome scores, implant fixation, radiological graft site remodelling, and revision failures.


Bone & Joint Open
Vol. 4, Issue 10 | Pages 808 - 816
24 Oct 2023
Scott CEH Snowden GT Cawley W Bell KR MacDonald DJ Macpherson GJ Yapp LZ Clement ND

Aims

This prospective study reports longitudinal, within-patient, patient-reported outcome measures (PROMs) over a 15-year period following cemented single radius total knee arthroplasty (TKA). Secondary aims included reporting PROMs trajectory, 15-year implant survival, and patient attrition from follow-up.

Methods

From 2006 to 2007, 462 consecutive cemented cruciate-retaining Triathlon TKAs were implanted in 426 patients (mean age 69 years (21 to 89); 290 (62.7%) female). PROMs (12-item Short Form Survey (SF-12), Oxford Knee Score (OKS), and satisfaction) were assessed preoperatively and at one, five, ten, and 15 years. Kaplan-Meier survival and univariate analysis were performed.


Bone & Joint Research
Vol. 12, Issue 7 | Pages 447 - 454
10 Jul 2023
Lisacek-Kiosoglous AB Powling AS Fontalis A Gabr A Mazomenos E Haddad FS

The use of artificial intelligence (AI) is rapidly growing across many domains, of which the medical field is no exception. AI is an umbrella term defining the practical application of algorithms to generate useful output, without the need of human cognition. Owing to the expanding volume of patient information collected, known as ‘big data’, AI is showing promise as a useful tool in healthcare research and across all aspects of patient care pathways. Practical applications in orthopaedic surgery include: diagnostics, such as fracture recognition and tumour detection; predictive models of clinical and patient-reported outcome measures, such as calculating mortality rates and length of hospital stay; and real-time rehabilitation monitoring and surgical training. However, clinicians should remain cognizant of AI’s limitations, as the development of robust reporting and validation frameworks is of paramount importance to prevent avoidable errors and biases. The aim of this review article is to provide a comprehensive understanding of AI and its subfields, as well as to delineate its existing clinical applications in trauma and orthopaedic surgery. Furthermore, this narrative review expands upon the limitations of AI and future direction.

Cite this article: Bone Joint Res 2023;12(7):447–454.


Bone & Joint Open
Vol. 4, Issue 6 | Pages 463 - 471
23 Jun 2023
Baldock TE Walshaw T Walker R Wei N Scott S Trompeter AJ Eardley WGP

Aims

This is a multicentre, prospective assessment of a proportion of the overall orthopaedic trauma caseload of the UK. It investigates theatre capacity, cancellations, and time to surgery in a group of hospitals that is representative of the wider population. It identifies barriers to effective practice and will inform system improvements.

Methods

Data capture was by collaborative approach. Patients undergoing procedures from 22 August 2022 and operated on before 31 October 2022 were included. Arm one captured weekly caseload and theatre capacity. Arm two concerned patient and injury demographics, and time to surgery for specific injury groups.


Bone & Joint Open
Vol. 2, Issue 8 | Pages 638 - 645
1 Aug 2021
Garner AJ Edwards TC Liddle AD Jones GG Cobb JP

Aims

Joint registries classify all further arthroplasty procedures to a knee with an existing partial arthroplasty as revision surgery, regardless of the actual procedure performed. Relatively minor procedures, including bearing exchanges, are classified in the same way as major operations requiring augments and stems. A new classification system is proposed to acknowledge and describe the detail of these procedures, which has implications for risk, recovery, and health economics.

Methods

Classification categories were proposed by a surgical consensus group, then ranked by patients, according to perceived invasiveness and implications for recovery. In round one, 26 revision cases were classified by the consensus group. Results were tested for inter-rater reliability. In round two, four additional cases were added for clarity. Round three repeated the survey one month later, subject to inter- and intrarater reliability testing. In round four, five additional expert partial knee arthroplasty surgeons were asked to classify the 30 cases according to the proposed revision partial knee classification (RPKC) system.


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 234 - 244
1 Feb 2021
Gibb BP Hadjiargyrou M

Antibiotic resistance represents a threat to human health. It has been suggested that by 2050, antibiotic-resistant infections could cause ten million deaths each year. In orthopaedics, many patients undergoing surgery suffer from complications resulting from implant-associated infection. In these circumstances secondary surgery is usually required and chronic and/or relapsing disease may ensue. The development of effective treatments for antibiotic-resistant infections is needed. Recent evidence shows that bacteriophage (phages; viruses that infect bacteria) therapy may represent a viable and successful solution. In this review, a brief description of bone and joint infection and the nature of bacteriophages is presented, as well as a summary of our current knowledge on the use of bacteriophages in the treatment of bacterial infections. We present contemporary published in vitro and in vivo data as well as data from clinical trials, as they relate to bone and joint infections. We discuss the potential use of bacteriophage therapy in orthopaedic infections. This area of research is beginning to reveal successful results, but mostly in nonorthopaedic fields. We believe that bacteriophage therapy has potential therapeutic value for implant-associated infections in orthopaedics.

Cite this article: Bone Joint J 2021;103-B(2):234–244.


Bone & Joint 360
Vol. 8, Issue 1 | Pages 31 - 33
1 Feb 2019


Bone & Joint 360
Vol. 7, Issue 3 | Pages 27 - 29
1 Jun 2018


Bone & Joint 360
Vol. 8, Issue 5 | Pages 33 - 35
1 Oct 2019