Advertisement for orthosearch.org.uk
Results 1 - 12 of 12
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 716 - 724
4 Dec 2024
Cao S Chen Y Zhu Y Jiang S Yu Y Wang X Wang C Ma X

Aims

This cross-sectional study aimed to investigate the in vivo ankle kinetic alterations in patients with concomitant chronic ankle instability (CAI) and osteochondral lesion of the talus (OLT), which may offer opportunities for clinician intervention in treatment and rehabilitation.

Methods

A total of 16 subjects with CAI (eight without OLT and eight with OLT) and eight healthy subjects underwent gait analysis in a stair descent setting. Inverse dynamic analysis was applied to ground reaction forces and marker trajectories using the AnyBody Modeling System. One-dimensional statistical parametric mapping was performed to compare ankle joint reaction force and joint moment curve among groups.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 898 - 903
17 Oct 2024
Mazaheri S Poorolajal J Mazaheri A

Aims

The sensitivity and specificity of electrodiagnostic parameters in diagnosing carpal tunnel syndrome (CTS) have been reported differently, and this study aims to address this gap.

Methods

This case-control study was conducted on 57 cases with CTS and 58 controls without complaints, such as pain or paresthesia on the median nerve. The main assessed electrodiagnostic parameters were terminal latency index (TLI), residual latency (RL), median ulnar F-wave latency difference (FdifMU), and median sensory latency-ulnar motor latency difference (MSUMLD).


Aims

To systematically review the efficacy of split tendon transfer surgery on gait-related outcomes for children and adolescents with cerebral palsy (CP) and spastic equinovarus foot deformity.

Methods

Five databases (CENTRAL, CINAHL, PubMed, Embase, Web of Science) were systematically screened for studies investigating split tibialis anterior or split tibialis posterior tendon transfer for spastic equinovarus foot deformity, with gait-related outcomes (published pre-September 2022). Study quality and evidence were assessed using the Methodological Index for Non-Randomized Studies, the Risk of Bias In Non-Randomized Studies of Interventions, and the Grading of Recommendations Assessment, Development and Evaluation.


Aims

The aim of this study was to review the current evidence surrounding curve type and morphology on curve progression risk in adolescent idiopathic scoliosis (AIS).

Methods

A comprehensive search was conducted by two independent reviewers on PubMed, Embase, Medline, and Web of Science to obtain all published information on morphological predictors of AIS progression. Search items included ‘adolescent idiopathic scoliosis’, ‘progression’, and ‘imaging’. The inclusion and exclusion criteria were carefully defined. Risk of bias of studies was assessed with the Quality in Prognostic Studies tool, and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) approach. In all, 6,286 publications were identified with 3,598 being subjected to secondary scrutiny. Ultimately, 26 publications (25 datasets) were included in this review.


Bone & Joint Open
Vol. 2, Issue 1 | Pages 40 - 47
1 Jan 2021
Kivle K Lindland ES Mjaaland KE Svenningsen S Nordsletten L

Aims

The gluteus minimus (GMin) and gluteus medius (GMed) have unique structural and functional segments that may be affected to varying degrees, by end-stage osteoarthritis (OA) and normal ageing. We used data from patients with end-stage OA and matched healthy controls to 1) quantify the atrophy of the GMin and GMed in the two groups and 2) describe the distinct patterns of the fatty infiltration in the different segments of the GMin and GMed in the two groups.

Methods

A total of 39 patients with end-stage OA and 12 age- and sex frequency-matched healthy controls were prospectively enrolled in the study. Fatty infiltration within the different segments of the GMin and the GMed was assessed on MRI according to the semiquantitative classification system of Goutallier and normalized cross-sectional areas were measured.


Bone & Joint Open
Vol. 1, Issue 9 | Pages 576 - 584
18 Sep 2020
Sun Z Liu W Li J Fan C

Post-traumatic elbow stiffness is a disabling condition that remains challenging for upper limb surgeons. Open elbow arthrolysis is commonly used for the treatment of stiff elbow when conservative therapy has failed. Multiple questions commonly arise from surgeons who deal with this disease. These include whether the patient has post-traumatic stiff elbow, how to evaluate the problem, when surgery is appropriate, how to perform an excellent arthrolysis, what the optimal postoperative rehabilitation is, and how to prevent or reduce the incidence of complications. Following these questions, this review provides an update and overview of post-traumatic elbow stiffness with respect to the diagnosis, preoperative evaluation, arthrolysis strategies, postoperative rehabilitation, and prevention of complications, aiming to provide a complete diagnosis and treatment path.

Cite this article: Bone Joint Open 2020;1-9:576–584.


Bone & Joint Research
Vol. 8, Issue 11 | Pages 509 - 517
1 Nov 2019
Kang K Koh Y Park K Choi C Jung M Shin J Kim S

Objectives. The aim of this study was to investigate the biomechanical effect of the anterolateral ligament (ALL), anterior cruciate ligament (ACL), or both ALL and ACL on kinematics under dynamic loading conditions using dynamic simulation subject-specific knee models. Methods. Five subject-specific musculoskeletal models were validated with computationally predicted muscle activation, electromyography data, and previous experimental data to analyze effects of the ALL and ACL on knee kinematics under gait and squat loading conditions. Results. Anterior translation (AT) significantly increased with deficiency of the ACL, ALL, or both structures under gait cycle loading. Internal rotation (IR) significantly increased with deficiency of both the ACL and ALL under gait and squat loading conditions. However, the deficiency of ALL was not significant in the increase of AT, but it was significant in the increase of IR under the squat loading condition. Conclusion. The results of this study confirm that the ALL is an important lateral knee structure for knee joint stability. The ALL is a secondary stabilizer relative to the ACL under simulated gait and squat loading conditions. Cite this article: Bone Joint Res 2019;8:509–517


Bone & Joint Research
Vol. 6, Issue 1 | Pages 66 - 72
1 Jan 2017
Mayne E Memarzadeh A Raut P Arora A Khanduja V

Objectives

The aim of this study was to systematically review the literature on measurement of muscle strength in patients with femoroacetabular impingement (FAI) and other pathologies and to suggest guidelines to standardise protocols for future research in the field.

Methods

The Cochrane and PubMed libraries were searched for any publications using the terms ‘hip’, ‘muscle’, ‘strength’, and ‘measurement’ in the ‘Title, Abstract, Keywords’ field. A further search was performed using the terms ‘femoroacetabular’ or ‘impingement’. The search was limited to recent literature only.


Bone & Joint Research
Vol. 6, Issue 1 | Pages 31 - 42
1 Jan 2017
Kang K Koh Y Jung M Nam J Son J Lee Y Kim S Kim S

Objectives. The aim of the current study was to analyse the effects of posterior cruciate ligament (PCL) deficiency on forces of the posterolateral corner structure and on tibiofemoral (TF) and patellofemoral (PF) contact force under dynamic-loading conditions. Methods. A subject-specific knee model was validated using a passive flexion experiment, electromyography data, muscle activation, and previous experimental studies. The simulation was performed on the musculoskeletal models with and without PCL deficiency using a novel force-dependent kinematics method under gait- and squat-loading conditions, followed by probabilistic analysis for material uncertain to be considered. Results. Comparison of predicted passive flexion, posterior drawer kinematics and muscle activation with experimental measurements showed good agreement. Forces of the posterolateral corner structure, and TF and PF contact forces increased with PCL deficiency under gait- and squat-loading conditions. The rate of increase in PF contact force was the greatest during the squat-loading condition. The TF contact forces increased on both medial and lateral compartments during gait-loading conditions. However, during the squat-loading condition, the medial TF contact force tended to increase, while the lateral TF contact forces decreased. The posterolateral corner structure, which showed the greatest increase in force with deficiency of PCL under both gait- and squat-loading conditions, was the popliteus tendon (PT). Conclusion. PCL deficiency is a factor affecting the variability of force on the PT in dynamic-loading conditions, and it could lead to degeneration of the PF joint. Cite this article: K-T. Kang, Y-G. Koh, M. Jung, J-H. Nam, J. Son, Y.H. Lee, S-J. Kim, S-H. Kim. The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions: A computational knee model. Bone Joint Res 2017;6:31–42. DOI: 10.1302/2046-3758.61.BJR-2016-0184.R1


Bone & Joint 360
Vol. 5, Issue 4 | Pages 27 - 29
1 Aug 2016


Bone & Joint 360
Vol. 3, Issue 2 | Pages 16 - 17
1 Apr 2014

The April 2014 Shoulder & Elbow Roundup360 looks at: arthroscopic capsular release successful after six months; MCIC in cuff surgery; analgesia following arthroscopic cuff repair; platelet-rich fibrin; and cuff tear and suprascapular nerve neuropathy?


Bone & Joint Research
Vol. 3, Issue 2 | Pages 38 - 47
1 Feb 2014
Hogendoorn S Duijnisveld BJ van Duinen SG Stoel BC van Dijk JG Fibbe WE Nelissen RGHH

Objectives. Traumatic brachial plexus injury causes severe functional impairment of the arm. Elbow flexion is often affected. Nerve surgery or tendon transfers provide the only means to obtain improved elbow flexion. Unfortunately, the functionality of the arm often remains insufficient. Stem cell therapy could potentially improve muscle strength and avoid muscle-tendon transfer. This pilot study assesses the safety and regenerative potential of autologous bone marrow-derived mononuclear cell injection in partially denervated biceps. Methods. Nine brachial plexus patients with insufficient elbow flexion (i.e., partial denervation) received intramuscular escalating doses of autologous bone marrow-derived mononuclear cells, combined with tendon transfers. Effect parameters included biceps biopsies, motor unit analysis on needle electromyography and computerised muscle tomography, before and after cell therapy. Results. No adverse effects in vital signs, bone marrow aspiration sites, injection sites, or surgical wound were seen. After cell therapy there was a 52% decrease in muscle fibrosis (p = 0.01), an 80% increase in myofibre diameter (p = 0.007), a 50% increase in satellite cells (p = 0.045) and an 83% increase in capillary-to-myofibre ratio (p < 0.001) was shown. CT analysis demonstrated a 48% decrease in mean muscle density (p = 0.009). Motor unit analysis showed a mean increase of 36% in motor unit amplitude (p = 0.045), 22% increase in duration (p = 0.005) and 29% increase in number of phases (p = 0.002). Conclusions. Mononuclear cell injection in partly denervated muscle of brachial plexus patients is safe. The results suggest enhanced muscle reinnervation and regeneration. Cite this article: Bone Joint Res 2014;3:38–47