Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 393 - 393
1 Apr 2004
Kusaba A Kuroki Y Kondo S Hirose I Ito Y Hemmi N Shirasaki Y Tateishi T Scholz J
Full Access

Friction was studied in 67 retrieved cemented cups with 32 mm internal diameter. Friction was measured under 1.0 KN of static load. High molecular hyaluronic acid was adapted as a lubricant. Thirty cups were combined with alumina heads and 37 were combined with metal heads. The years cups were in situ was 7.5 (3.2–13.2) for alumina-polyethylene implants and 8.9 (1.5–15.7) for metal-polyethylene implants (p> 0.05).

The revision rate at 15 years follow-up was higher in metal-polyethylene (PE) implants (57%) than that of alumina-PE implants (40%) (p< 0.05). The prevalence of cup loosening was less in alumina-PE implants (12/30) than in metal-PE implants (29/37) (p< 0.01). Less wear was observed in alumina-PE implants (1.15+−0,80mm) than in metal-PE implants (1.62+−0.61mm) (p< 0.01). Less wear was observed in cups without loosening (alumina-PE implants: 1.84+−0.57mm, metal-PE implants: 1.75+−0.51mm) than in those with loosening (alumina-PE implants: 0.69+−0.56mm, metal-PE implants: 1.31+−0.73mm) in both types (alumina-PE implants: p< 0.01, metal-PE implants: p< 0.05). Less wear rate was observed in cups without loosening (alumina-PE implants: 0.11+−0.05 mm/year, metal-PE implants: 0.14+−0.05mm/year) than in those with loosening (alumina-PE implants: 0.17+−0.03 mm/year, metal-PE implants: 0.22+−0.09mm/year) in both types (alumina-PE implants: p< 0.01, metal-PE implants: p< 0.05). The coefficient of friction increased in proportion to the progress of cup wear in both types (alumina-PE implants: r2 =0.217, p< 0.01, metal-PE implants: r2 =0.183, p< 0.01). Relation between the coefficient of friction and stability of implants was not detected in both types, while alumina-PE implants had lower coefficient of friction (0.137+-0.056) than metal-PE implants (0.209+−0.098) (p< 0.01). The torque of metal-PE implants without stem loosening (0.137+−0.053) was larger than that of alumina-PE implants with stem loosening (0.274+−0.088) (p< 0.01).

The results suggest that wear has greater influence on stability of implants than the friction, whereas coefficient of friction increases in worn implants.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 410 - 410
1 Apr 2004
Tateishi T Chen G Ushida T
Full Access

Biodegradable porous scaffolds play an important role in tissue engineering as the temporary templates for transplanted cells to guide the formation of the new organs. The most commonly used porous scaffolds are constructed from two classes of biomaterials. One class consists of synthetic biodegradable polymers such as poly (α-hydroxy acids), poly(glycolic acid), poly(lactic acid), and their copolymer of poly(DL-lactic-co-glycolic acid) (PLGA). The other class consists of naturally derived polymers such as collagen. These biomaterials have their respective advantages and drawbacks. Therefore, hybridization of these biomaterials has been expected to combine their advantages to provide excellent three-dimensional porous biomaterials for tissue engineering. Our group developed one such kind of hybrid biodegradable porous scaffolds by hybridizing synthetic poly (α-hydroxy acids) with collagen. Collagen microsponges were nested in the pores of poly (α-hydroxy acids) sponge to construct the poly (α-hydroxy acids)-collagen hybrid sponge.

Observation by scanning electron microscopy (SEM) showed that microsponges of collagen with interconnected pore structures were formed in the pores of poly (α-hydroxy acids) sponge. The mechanical strength of the hybrid sponge was higher than those of either poly (α-hydroxy acids) or collagen sponges both in dry and wet states. The wettability with water was improved by hybridization with collagen, which facilitated cell seeding in the hybrid sponge. Use of the poly (α-hydroxy acids) sponge as a skeleton facilitated formation of the hybrid sponge into the desired shapes with high mechanical strength, while collagen microsponges contributed good cell interaction and hydrophilicity. One of such kind of hybrids. Additionally, our group developed a hydrostatic pressure bioreactor for chondrocyte culture. And our study showed that hydrostatic pressure (0–3 MPa) had promotional effects on the production of proteoglycan and type II collagen by cultured chondrocytes. Therefore, it would be a promising pathway for reconstructing cartilage-like tissue to culture chondrocytes in this three-dimensional hybrid sponge under physiological hydrostatic pressure.


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_IV | Pages 393 - 393
1 Apr 2004
Kusaba Kuroki Y Kondo S Hirose I Ito Y Hemmi N Shirasaki Y Tateishi T Scholz J
Full Access

A method was developed to take radiographs showing the inner articulation of bipolar hip prostheses. By this method, wear was measured in 68 hips whose inner head diameter was 22 mm. Average annual wear rate was 0.17 mm. Osteolysis was observed in 25 hips (37%) and there was no difference between the annual wear rate of hips with and without osteolysis. Studying 19 retrieved prostheses, abrasion of the rim was deeper in hips with osteolysis than those without it. Wear rate of the inner articulation in bipolar hip prosthesis is much larger than that in Charnley’s prosthesis, as linear penetration into the articulation surface reduces the motion range of the inner articulation and this increases impingement and advances rim abrasion.