We wanted to evaluate the effects of a bone anabolic agent (bone morphogenetic protein 2 (BMP-2)) on an anti-catabolic background (systemic or local zoledronate) on fixation of allografted revision implants. An established allografted revision protocol was implemented bilaterally into the stifle joints of 24 canines. At revision surgery, each animal received one BMP-2 (5 µg) functionalized implant, and one raw implant. One group (12 animals) received bone graft impregnated with zoledronate (0.005 mg/ml) before impaction. The other group (12 animals) received untreated bone graft and systemic zoledronate (0.1 mg/kg) ten and 20 days after revision surgery. Animals were observed for an additional four weeks before euthanasia.Aims
Methods
Progressive resistance training (PRT) as a mean to reduce symptoms in patients with hip dysplasia (HD) has not yet been tried out. The aim of this study was to examine if PRT is feasible in patients with HD. A secondary purpose was to report data on changes of patient reported outcomes, muscle performance and hip muscle strength following PRT. Patients diagnosed with HD on the waiting list for a periacetabular osteotomy (PAO) were offered to participate in a PRT feasibility study. The PRT intervention consisted of 8-weeks of supervised PRT consisting of 20 training sessions with exercises for the hips and knees. Feasibility was evaluated as adherence, the number of dropouts and adverse events. Furthermore, pain was reported after each exercise and one day after a training session using a 100mm visual analog scale (VAS). Pain was categorized as “safe” (VAS ≤20), “acceptable” (VAS >20–50) and “high risk” (VAS >50). Pre- and post the intervention patients completed the Copenhagen Hip and Groin Outcome Score (HAGOS), performed two hop-tests on each leg and had their peak torque of the hip extensors and flexors assessed by isokinetic dynamometry.Introduction
Materials and methods
An increasing number of hip prostheses are inserted without bone cement. Experimental research has shown that hydroxyapatite (HA) coated implants are strongly fixated in the bone, which is believed to reduce the likelihood of prosthetic loosening. However, in recent years, there has been much debate about the role of HA particles in third-body polyethylene (PE) wear and formerly we have shown the revision rate to be high among older-design HA coated cups. We hypothesized increased PE wear-rate using HA coated acetabular components in comparison with non-HA coated components (control group).Background
Purpose
Randomized, controlled trials (RCTs) are generally accepted as the “gold standard” for the provision of the most unbiased measures of the efficacy of interventions but are often criticized for the lack of external validity. We assessed the external validity of a RCT examining the efficacy of local infiltration analgesia (LIA) compared with continuous epidural infusion after total knee arthroplasty (TKA) During a one-year period, all patients consecutively admitted for elective, unilateral, primary TKA were identified as potential participants. All underwent eligibility screening to determine who were eligible for participation in a randomized controlled trial. We investigated the distribution of preoperative characteristics and postoperative variables among excluded patients, non-consenters, and enrolled and randomized participants.Background
Methods
Hip and knee arthroplasty present surgeons with difficult bone loss. In these cases the use of morselized allograft is a well established way of optimizing early implant fixation. In revisions, the surgical field is potentially infected. The use of allograft bone creates a “dead space” in which the immune system has impaired access, and even a small amount of bacteria may therefore theoretically increase the risk of infection. In vivo studies have shown that allograft bone is suitable as a vehicle of local antibiotic delivery. We hypothesized that the allograft bone could be used as a local antibiotic delivery vehicle without impairing the implant fixation, tested by mechanical push-out. Following approval of the Institutional Animal Care and use Committee we implanted a cylindrical (10×6 mm) porous-coated Ti implant in each distal femur of 12 dogs observed for 4 weeks. The implants were surrounded by a circumferential gap of 2.5 mm impacted with a standardized volume of morselized allograft. In the two intervention groups, 0.2ml tobramycin solution of high (800mg/ml) and low (200mg/ml) concentration was added to the allograft, respectively. In the control group 0.2ml saline was added to the allograft. ANOVA-test was applied followed by paired t-test where appropriate. A p-value < 0,05 was considered statistically significant.Introduction
Material and Methods
Intermittent administration of parathyroid hormone (PTH) is bone anabolic and improves fracture healing. As adjuvant in implant surgery PTH has only recently been introduced experimentally predominantly showing improved implant integration within empty peri-implant bone defects. Given the desire to improve the graft incorporation process, the purpose of our study is to examine whether PTH improves early implant integration by accelerating healing of peri-implant bone allograft. We test the hypothesis that systemic intermittent administration of PTH increases new bone formation in allograft inserted in a gap with impacted morselized bone allograft around an experimental orthopaedic implant. We hypothesize that parathyroid hormone will improve new bone formation in allograft and preserve allograft.
Parathyroid hormone (PTH) is a regulator of bone metabolism. When PTH is administered intermittently it induces strong anabolic effect by increasing osteoblastic activity. Our understanding of PTH is mainly based on research on osteoporosis, in which bone formation is known to be coupled to the bone resorption. In the orthopaedic situation of a joint replacement other conditions apply. We therefore find it of interest to examine PTH’s role as an adjuvant in implant surgery. We examine the effect of PTH on the osseointegration of an experimental orthopaedic implant in which the implant due to insertion initiates a bone repair in the implant bed. We hypothesize that parathyroid hormone will improve the bone ongrowth at the bone-implant interface.
In the peri-centric region the tissue fraction for PTH was 0,238 (0,211–0,276) for bone, 0,752 (0,724–0,785) for marrow and 0 (0–0,007) for fibrous tissue, as for control 0,223 (0,201–0,235) for bone, 0,777 (0,765–0,799) for marrow and 0 (0–0) for fibrous tissue.
The presentation is based on the results of the nursing intervention program by using telephone contact to elderly patients with hip replacement after discharge.
We hypothesized that topical bisphosphonate (Pamidronate, Mayne Pharma) in combination with rhBMP2 (InductOs, Wyeth) would give increased mechanical implant fixation and increased new bone formation without excessive allograft resorption. We looked at both porous-coated Ti implants and HA-coated implants.
allograft alone (control) allograft + rhBMP2 allograft + pamidronate allograft + rhBMP2 + pamidronate (combination) The observation time was 4 weeks.
The HA implants had less fibrous tissue and more new bone compared to the Ti implants. The fractions of allograft were the same. The rhBMP2 group had more new bone and much less fibrous tissue than the mechanically superior control group. However, there was almost no allograft left in the rhBMP2 group due to extreme resorption. The addition of pamidronate seemed to freeze bone metabolism around the implants. Neither in the pamidronate group nor in the combination group was there anything but minor new bone growth. The allograft was preserved. In the pamidronate group there was a dense, thick fibrous capsule around the implants. This was not the case in the combined rhBMP2-pamidronate group, and is most likely a positive effect of the rhBMP2.
The negative results with rhBMP2 may be due to over dosage, which warrants further preclinical testing. Despite the limitations of this animal study with non-loaded implants, the results encourage extreme caution in adjuvant therapies of arthroplastic surgery.
The HA coating yielded superior effect on bone ingrowth compared to Ti when surrounded by a gap-whereas no effect was found in the press fit situation. Allogeneic bone graft packed around the implant enhanced the anchorage of Ti implants, but HA coating alone without bone graft offered almost the same improvement in anchorage in 2 mm defects. Only minor improvement was obtained when bone graft was used together with hydroxyapatite. Another interesting study showed that HA coating was able to prevent polyethylene particles to migrate around the implant by creating a seal of bony ingrowth. HA coating on a porous surface resulted in significantly stronger fixation compared with HA coating on a grit blasted surface. A clinical study (using roentgen stereophotogrammetric analysis, RSA) on total hip arthroplasty showed that HA coated femoral components were stable 3 months after surgery whereas migration of Ti coated components continued resulting in significantly less migration of HA coated components at 60 months.