As has been shown in larger animal models, knee immobilization can lead to arthrofibrotic phenotypes. Our study included 168 C57BL/6J female mice, with 24 serving as controls, and 144 undergoing a knee procedure to induce a contracture without osteoarthritis (OA). Experimental knees were immobilized for either four weeks (72 mice) or eight weeks (72 mice), followed by a remobilization period of zero weeks (24 mice), two weeks (24 mice), or four weeks (24 mice) after suture removal. Half of the experimental knees also received an intra-articular injury. Biomechanical data were collected to measure passive extension angle (PEA). Histological data measuring area and thickness of posterior and anterior knee capsules were collected from knee sections.Aims
Methods
Outcomes of current operative treatments for arthrofibrosis after total knee arthroplasty (TKA) are not consistently positive or predictable. Pharmacological in vivo studies have focused mostly on prevention of arthrofibrosis. This study used a rabbit model to evaluate intra-articular (IA) effects of celecoxib in treating contracted knees alone, or in combination with capsular release. A total of 24 rabbits underwent contracture-forming surgery with knee immobilization followed by remobilization surgery at eight weeks. At remobilization, one cohort underwent capsular release (n = 12), while the other cohort did not (n = 12). Both groups were divided into two subcohorts (n = 6 each) – one receiving IA injections of celecoxib, and the other receiving injections of vehicle solution (injections every day for two weeks after remobilization). Passive extension angle (PEA) was assessed in live rabbits at 10, 16, and 24 weeks, and disarticulated limbs were analyzed for capsular stiffness at 24 weeks.Aims
Methods
Arthrofibrosis is a relatively common complication after joint injuries and surgery, particularly in the knee. The present study used a previously described and validated rabbit model to assess the biomechanical, histopathological, and molecular effects of the mast cell stabilizer ketotifen on surgically induced knee joint contractures in female rabbits. A group of 12 skeletally mature rabbits were randomly divided into two groups. One group received subcutaneous (SQ) saline, and a second group received SQ ketotifen injections. Biomechanical data were collected at eight, ten, 16, and 24 weeks. At the time of necropsy, posterior capsule tissue was collected for histopathological and gene expression analyses (messenger RNA (mRNA) and protein).Aims
Methods
Sustained intra-articular delivery of pharmacological agents is an attractive modality but requires use of a safe carrier that would not induce cartilage damage or fibrosis. Collagen scaffolds are widely available and could be used intra-articularly, but no investigation has looked at the safety of collagen scaffolds within synovial joints. The aim of this study was to determine the safety of collagen scaffold implantation in a validated A total of 96 rabbits were randomly and equally assigned to four different groups: arthrotomy alone; arthrotomy and collagen scaffold placement; contracture surgery; and contracture surgery and collagen scaffold placement. Animals were killed in equal numbers at 72 hours, two weeks, eight weeks, and 24 weeks. Joint contracture was measured, and cartilage and synovial samples underwent histological analysis.Objectives
Materials and Methods
Animal models have been developed that allow simulation of post-traumatic joint contracture. One such model involves contracture-forming surgery followed by surgical capsular release. This model allows testing of antifibrotic agents, such as rosiglitazone. A total of 20 rabbits underwent contracture-forming surgery. Eight weeks later, the animals underwent a surgical capsular release. Ten animals received rosiglitazone (intramuscular initially, then orally). The animals were sacrificed following 16 weeks of free cage mobilisation. The joints were tested biomechanically, and the posterior capsule was assessed histologically and via genetic microarray analysis.Aims
Methods
Based upon genetic analysis, decorin is an exciting pharmacologic agent of potential anti-fibrogenic effect on arthrofibrosis in our animal model. While the pathophysiology of arthrofibrosis is not fully understood, some anti-fibrotic molecules such as decorin could potentially be used for the prevention or treatment of joint stiffness. The goal of this study was to determine whether intra-articular administration of decorin influences the expression of genes involved in the fibrotic cascade ultimately leading to less contracture in an animal model.Summary
Introduction
The goal of this study was to determine whether intra-articular
administration of the potentially anti-fibrotic agent decorin influences
the expression of genes involved in the fibrotic cascade, and ultimately
leads to less contracture, in an animal model. A total of 18 rabbits underwent an operation on their right knees
to form contractures. Six limbs in group 1 received four intra-articular
injections of decorin; six limbs in group 2 received four intra-articular
injections of bovine serum albumin (BSA) over eight days; six limbs
in group 3 received no injections. The contracted limbs of rabbits
in group 1 were biomechanically and genetically compared with the
contracted limbs of rabbits in groups 2 and 3, with the use of a
calibrated joint measuring device and custom microarray, respectively.Objectives
Methods
The purpose of this study is to report our experience with revision of total elbow arthroplasty by exchange cementation. Between 1982 and 2004 at our institution, forty six elbows were treated with exchange cementation of a total elbow arthroplasty into the existing cement mantle or debrided bone interface, without the use of an osteotomy, bone graft or prosthetic augmentation. Indications for the procedure were aseptic loosening (17), second stage after septic loosening (14), instability (7), prosthetic fracture (4), periprosthetic fracture (2), failed hemiarthroplasty (1) and ulnar component wear (1). Both components were exchanged in 18 elbows, the humerus alone in 25 and the ulna in 3. Mean follow up was 90.5 months (10 to 266 months);18 patients had died with the prosthesis in situ. Complications were noted in 22 elbows; periprosthetic fracture of ulna (6) and humerus (2), humeral component fracture (1), aseptic loosening (4), non-union (1), heterotrophic ossification (2), soft tissue contracture (2) and soft tissue failure (2), delayed wound healing (1) and bushing failure (1). Reoperation was required in 10 elbows for revision of both components (2), ulna (3), humerus (1), bushing revision (2), soft tissue debridement (1) and soft tissue repair (1). There were no septic recurrences in previously infected elbows; however the reoperation rate in this group was 29% versus 19% after re-cementation for other causes. Revision of total elbow arthroplasty by exchange cementation is a reasonable treatment for those elbows with adequate bone stock for secure prosthetic fixation; however careful consideration should be given to augmentation of the ulna due to the high rate of periprosthetic fracture in this series. Re-cementation following débridement for infection is effective despite having a higher rate of revision operation compared to re-cementation in the aseptic elbow.