Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 48 - 48
1 May 2012
McNamara I Rayment A Best S Rushton N
Full Access

In vitro femoral studies have demonstrated the addition of hydroxyapatite (HA), to morcellised bone graft (MBG) decreases femoral prosthesis subsidence. However, with an increased risk of femoral fracture during the impaction of a MBG:HA mixture, possibly due to greater force transmission to the femoral cortex via the HA. The aim was to compare the hoop strains and subsidence of a 1:1 mixture of MBG:HA with pure bone allograft during impaction and subsequent endurance testing in a revision hip arthroplasty model.

Materials and methods Large Sawbone femurs were prepared to represent a femur with bone loss (Sawbones, Sweden). 12 uniaxial strain gauges were attached to each femur at 0, 90, 180 and 270 degrees, at distal, midshaft, proximal points to measure hoop strain. Impaction grafting was performed using X-Change 2 instruments and an Instron servohydaulic machine for 2 distal impactions and 4 proximal impactions for 60 impactions each.

Study groups

The study consisted of four experimental groups: 1)Pure MBG, force of 1.98 kN 2)Pure MBG, force 3.63kN. 3)1:1 mixture of MBG: porous HA (pHA), 4)1:1 mixture MBG: non porous HA (npHA). 6 samples of each group were performed.

Endurance testing

The potted femur was loaded in a manner representing the walking cycle (1.98kN) at 1 Hz for 50 000 cycles. The displacement of the femoral head during loading was measured by two displacement transducers (LVDT) were mounted on aluminum brackets to measure vertical displacement and rotation.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 33 - 33
1 May 2012
McNamara I Ong M Rayment A Brooks R Prevost T Best S Rushton N
Full Access

Problems associated with allograft are well known. The addition of hydroxyapatite (HA) to allograft has various mechanical advantages, especially within revision arthroplasty. The mixing of bone and HA results in mechanical properties different from the individual parts. However, at present the changes in material properties the mix have not been fully investigated and the optimum mixing ratio not characterized. A compressive uniaxial chamber was used to investigate the change in mechanical properties occurring with the addition of HA in varying proportions to morcellised bone graft (MBG).

Materials and methods

MBG was prepared using femoral heads donated from patients undergoing total hip replacement surgery using a bone mill in a standard manner. Non porous HA (npHA) was prepared using a precipitation method of Calcium Carbonate and Orthophosphoric acid. The porous HA, (pHA) is a 60% macroporosity HA commercially prepared.

Chamber

The uniaxial compression chamber was a 30mm diameter, steel chamber. Holes were drilled to allow fluid drainage. Loads were applied using a 10 kN load cell. Specimens were prepared in the volumetric proportions pure HA, pure MBG, 2:1, 1:1, 1:2 ratio of MBG to HA. The samples were subjected to compressive forces of incrementally increasing loads of up to 2 KN for 60 cycles. The sample was then allowed to creep under a stress of 2 kN. MBG was also tested up to forces of 7 kN. The mechanical parameters that were examined were the stiffness of the sample at the 60th cycle, (Ec60), and creep


Orthopaedic Proceedings
Vol. 86-B, Issue SUPP_I | Pages 79 - 80
1 Jan 2004
Clarke MT Lee PTH Rayment A Villar RN Rushton N
Full Access

Aims: After Total Hip Replacement (THR), bearing surface pistoning during the gait cycle can affect wear rates. This ‘micro-separation’ has been shown clinically by video-fluoroscopy to be greater with a Metal-on-Polyethylene (MOP) bearing than a Metal-on-Metal (MOM) one. In this study, we quantified the suction forces that these bearings generate during the swing phase of the gait cycle as a result of interfacial tension from the thin fluid film present at the bearing surface. Methods: We used a servo-hydraulic universal testing machine with 250N load cell and programmed a sinusoidal waveform that could vary the loads and frequencies applied to MOP or MOM bearings submerged in 25% serum. We measured the bearing separation (±1μm) at tensile loads of 10N to 100N lasting 0.1s to 0.5s per 1Hz cycle.

Results: MOM bearings resisted tensile loads of up to 35N when applied for 0.1s to 0.5s of the simulated gait cycle. Bearing separation was measured at a maximum of 198 microns. Above 50N, the MOM bearing was unable to prevent separation occurring even when applied for only 0.1s of the simulated gait cycle (p< 0.001). The MOP bearing could not resist separation at any of the applied tensile loads (p< 0.0001).

Conclusions: The suction-fit of the MOM bearing used in this study is insufficient to prevent bearing separation due to gravity (110N). However, it may reduce the total bearing separation distance by delaying the time point at which separation occurs during the finite period of the swing phase (< 0.5s) during the gait cycle. This effect is crucially dependent upon the bearing clearance, bearing diameter, weight of the leg, speed of walking and soft tissue tension around the hip. This ultimately relies upon prosthetic design, patient selection and surgical technique.