header advert
Results 1 - 5 of 5
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 221 - 221
1 Jul 2014
Kueny R Fensky F Sellenschloh K Püschel K Rueger J Lehmann W Hansen-Algenstaedt N Morlock M Huber G
Full Access

Summary Statement

From a mechanical point of view, the clinical use of pedicle screws in the atlas is a promising alternative to lateral mass screws due to an increased biomechanical fixation.

Introduction

The most established surgical technique for posterior screw fixation in the atlas (C1) is realised by screw placement through the lateral mass [1]. This surgical placement may lead to extended bleeding from the paravertebral venous plexus as well as a violation of the axis (C2) nerve roots [1]. Using pedicle screws is an emerging technique which utilises the canal passing through the posterior arch enabling the use of longer screws with a greater contact area while avoiding the venous plexus and axis nerve roots. The aim of this ex vivo study was to investigate if pedicle screws in C1 bear the potential to replace the more common lateral mass screws. Therefore, the comparative biomechanical fixation strengths in terms of cycles to failure, stiffness, and removal torque were investigated.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 217 - 217
1 Jul 2014
Ivicsics MF Bishop N Püschel K Berteau J Morlock M Huber G
Full Access

Summary

Nucleotomy almost doubles the transmitted forces on the facet joints in human lumbar spine, regardless of the amount of removed nucleus pulposus.

Introduction

Low back pain involves the lumbar facet joints in 15% to 45% of the cases. The surgical intervention, nucleotomy, might also lead to painful facets with a high risk; however, its mechanism is yet to be fully understood. The aim of this study is to reveal how a small amount of nucleus removal can change the force transmission on the facets.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 50 - 50
1 Jul 2014
Lu Y Püschel K Morlock M Huber G
Full Access

Summary

At the clinical CT image resolution level, there is no influence of the image voxel size on the derived finite element human cancellous bone models

Introduction

Computed tomography (CT)-based finite element (FE) models have been proved to provide a better prediction of vertebral strength than dual-energy x-ray absorptiometry [1]. FE models based on µCTs are able to provide the golden standard results [2], but due to the sample size restriction of the µCT and the XtremeCT machines, the clinical CT-based FE models is still the most promising tool for the in vivo prediction of vertebrae's strength. It has been found [3] that FE predicted Young's modulus of human cancellous bone increases as the image voxel size increases at the µCT resolution level [3]. However, it is still not clear whether the image voxel size in the clinical range has an impact on the predicted mechanical behavior of cancellous bone. This study is designed to answer this question.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 218 - 218
1 Jul 2014
Huber G Nagel K Skrzypiec DM Klein A Püschel K Morlock MM
Full Access

Summary

Lumbar spinal specimens exhibited high fatigue strength. The cycles to failure are not only dependent on the maximum peak load, but also on the load offset or the amplitude, respectably.

Introduction

Spinal injury might be caused by whole body vibrations. The permitted exposure to vibration in the workplace is therefore limited. However, there is a lack in knowledge how external vibrations might cause internal damages. Numerical whole body models might provide the potential to estimate the dynamic spinal loading during different daily activities, but depends on knowledge about the corresponding fatigue strength. This study is aiming to determine the in vitro fatigue strength of spinal specimens from donors of working age.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 370 - 370
1 Sep 2012
Schlegel U Siewe J Püschel K Gebert De Uhlenbrock A Eysel P Morlock M
Full Access

Despite proven advantages, pulsatile lavage seems to be used infrequently during preparation in cemented total knee arthroplasty. This remains irritating, as the technique has been suggested to improve radiological survival in cemented TKA, where aseptic loosening of the tibial component represents the main reason for revision. Furthermore, there may be a potential improvement of fixation strength for the tibial tray achieved by increased cement penetration. In this study, the influence of pulsed lavage on mechanical stability of the tibial component and bone cement penetration was analyzed in a cadaveric setting. Six pairs of cadaveric, proximal tibia specimen underwent computed tomography (CT) for assessment of bone mineral density (BMD) and exclusion of osseous lesions. Following surgical preparation, in one side of a pair, the tibial surface was irrigated using 1800ml normal saline and pulsatile lavage, while in the other side syringe lavage using the identical amount of fluid was applied. After careful drying, bone cement was hand-pressurized on the bone surface, tibial components were inserted and impacted in an identical way. After curing of cement, specimen underwent a postimplantation CT analysis). Cement distrubution was then assessed using a three-dimenionsional visualization software. Trabecular bone, cement and implant were segmented based on an automatic thresholding algorithm, which had been validated in a previous study. This allowed to determine median cement penetration for the entire cemented area. Furthermore, fixation strength of the tibial trays was determined by a vertical pull-out test using a servohydraulic material testing machine. Testing was performed under displacement control at a rate of 0,5mm/sec until implant failure. Data was described by median and range. Results were compared by a Wilcoxon matched pairs signed rank test with a type 1 error probability of 5 %. Median pull-out forces in the pulsed lavage group were 1275N (range 864–1391) and 568N (range 243–683) in the syringe lavage group (p=0.031). Cement penetration was likewise increased (p=0.031) in the pulsed lavage group (1.32mm; range 0.86–1.94), when compared to the syringe irrigated group (0.79mm; range 0.51–1.66). Failure occurred in the pulsatile lavage group at the implant-cement interface and in the syringe lavage group at the bone-cement interface, which indicates the weakness of the latter. Altogether, improved mechanical stability of the tibial implant and likewise increased bone cement interdigitation could be demonstrated in the current study, when pulsed lavage is implemented. Enhanced fixation strength was suggested being a key to improved survival of the implant. If this is the case, pulsatile lavage should be considered being a mandatory preparation step when cementing tibial components in TKA.