Abduction braces are commonly prescribed following the closed reduction of a dislocated prosthetic hip joint. Their use is controversial with limited evidence to support their use. We have conducted a retrospective review of dislocations in primary total hip replacements over a nine year period and report redislocation rates in patients braced, compared to those who were not. 67 patients were identified. 69% of those patients who were braced had a subsequent dislocation. Likewise 69% of those who did not receive a brace re-dislocated. 33% of patients that were braced dislocated whilst wearing the brace. Bracing was associated with patient discomfort, sleep disturbance, skin irritation and breakdown. Small femoral head size, monoblock femoral components and poor biomechanical reconstruction was prevalent amongst dislocators. Abduction bracing following closed reduction of a total hip replacement does not prevent redislocation and may be the cause of considerable morbidity to the patient.
To determine changes in Myosin Heavy Chain (MHC) isoform, hypertrophy marker IGF-1 and atrophy markers MuRF-1 and MAFbx.
Assessments were completed at baseline (T=0), T=6 weeks (just prior to operation) and 3 months post-operatively (T=18 weeks). Assessments included isokinetic dynamometry; MRI QF CSA and American Knee Society scores. A percutaneous muscle biopsy of the vastus lateralis muscle was also performed at T=0 and T=6 under local anaesthesia.
MHC IIa mRNA expression increased by 40% whilst IIx decreased by 60% representing a shift to a less fatigable fibre type (P=0.05 and 0.028 respectively). IGF-1, MuRF-1 and MAFbx mRNA levels did not change significantly in either group.
Osteoporosis is a common skeletal disorder characterised by a reduced bone mass and a progressive microarchitectural deterioration in bone tissue leading to bone fragility and susceptibility to fracture. The Wnt/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in regulating bone development and remodeling, with aberrations in signalling resulting in disturbances in bone mass. Our objectives were to assess the gene expression profile of primary human osteoblasts (HOBs) exposed to dexamethasone with a view to identifying key genes driving bone mass regulation and to assess the effects of the Wnt antagonist Dickkopf-1 (Dkk1) on the bone profile of primary human osteoblasts exposed in vitro to dexamethasone. HOBs were cultured in vitro and exposed to 10–8M dexamethasone over a time course of 4hr, 12hr and 24hr. RNA isolation, cDNA synthesis, in vitro transcription and microarray analysis were performed. Microarray data was validated by quantitative real time RT-PCR. Dkk1 expression was silenced using small interfering RNA (siRNA). Quantitative RT-PCR was performed to confirm gene knockdown. Control and Dex-treated HOBs were compared with respect to bone turnover. Markers of bone turnover analyzed included alkaline phosphatase activity, calcium deposition, osteocalcin expression, along with cell proliferation and cellular apoptosis. Global changes in HOB gene expression were elicited by dexamethasone. Development associated gene pathways were co-ordinately dysregulated with the expression profile of key genes of the Wnt Pathway significantly altered. Dkk1 expression in HOBs was increased in response to dexamethasone exposure with an associated reduction in alkaline phosphatase activity, calcium deposition and osteocalcin expression. Silencing of Dkk1 expression, as confirmed by quantitative RT-PCR, was associated with an increase in alkaline phosphatase activity and calcium deposition, along with increased cell proliferation and reduced cellular apoptosis. Dkk1 is an antagonist of Wnt/β-catenin signalling and plays a key role in regulating bone development and remodeling. Silencing the expression of Dkk1 in primary human osteoblasts has been shown to rescue the effects of dexamethasone-induced bone loss in vitro. The pharmacological targeting of the Wnt/β-catenin signaling pathway offers an exciting opportunity for the development of novel anabolic bone agents to treat osteoporosis and disorders of bone mass.
Evaluate the ability of NMES prehabilitation to improve strength and functional recovery post-TKA.
The modes of failure were aseptic loosening (4), progression of osteoarthritis (2), instability (3), infection (2), dislocated insert (1) and persistent pain after UKA (2). Tibia insert exchange was done in one patient and the rest were converted to primary Scorpio and PFC components. Three of the patients had significant defect in femoral condyle. Fourteen percent of cases required femoral stem extension or metal wedge augmentation. Nine of the 14 knees (64%) were followed up for an average of 15 months. The mean WOMAC and SF-36 scores at latest follow up were 33.33 and 63.79 respectively.
Each shear test was then repeated at four different normal loads so as to generate a family of stress-strain graphs. The Mohr-Coulomb failure envelope from which the shear strength and interlocking vales are derived was plotted for each test.
Patients with spinal cord injuries have been seen to have increased healing of attendant fractures. While the benefits are obvious, this excessive bone growth also causes unwanted side effects, such as decreased movement around joints, joint fusion and renal tract calculi. However, the cause for this phenomenon remains unclear. This paper evaluates two groups with spinal column fractures – those with neurological compromise (n=10) and those without (n=15), and compares them with a control group with isolated long bone fractures (n=12). Serum was taken from these patients at five specific time intervals post injury (1 day, 5 days, 10 days, 42 days (6 weeks) and 84 days(12 weeks)). These samples were then analysed for levels of Transforming Growth Factor-Beta (TGF-.) using the ELISA technique. This cytokine has been shown to stimulate bone formation after both topical and systemic administration. Results show TGF-.; levels of 142.79±29.51 ng/ml in the neurology group at 84 days post injury. This is higher than any of the other time points within this group (.0.009 vs. all other time points, ANOVA). Furthermore, this level is also higher than the levels recorded in the no neurology (103.51±36.81 ng/ml) and long bone (102.28±47.58 ng/ml) groups at 84 days post injury (p=0.009 and p=0.04 respectively, ANOVA). In conclusion, the results of this work, carried out for the first time in humans, offers strong evidence of the causative role of TGF-.; in the increased bone turnover and attendant complications seen in patients with acute spinal cord injuries.
Wear debris is a key factor in the pathophysiology of aseptic loosening of orthopaedic endoprostheses. Cobalt-chromium-molybdenum (Co-CrMo) alloys are used for metal-metal hip implants due to their enhanced wear resistance profiles. Whilst these alloys have widespread clinical application, little is known about their direct effect on osteoblast biology. To address this issue, in this study we have investigated particle-mediated inflammation, as a putative mechanism of aseptic loosening. The effects of Co2+ ions on the bone cellular milieu were assessed in vitro by profiling of classical inflammatory mediators. The inflammatory driver PGE2 was quantified and found to be increased, following osteoblast stimulation with metal ions, suggesting the initiation of a local inflammatory response to metal particle exposure. To determine the biological import of this molecular event, the role of metal ions in recruiting inflammatory cells by chemokine production was assessed. These data demonstrated significant induction of the chemokines, IL-8 and MCP-1 following both 12 and 24 hour exposure to 10ppm of Co2+. In this study, we demonstrate that Co2+ particles can rapidly induce chemotactic cytokines, IL-8 and MCP-1 early stress-responsive chemokines that function in activation and chemotaxis of monocytes, and PGE2, which stimulates bone resorption. We have shown that this induction occurs at a transcriptional level with significantly increased mRNA levels. These data lend further weight to the hypothesis that wear mediated osteolysis, is due, at least in part, to underlying chronic inflammation.
The purpose of this study was to review the early results of a consecutive series of patients undergoing periac-etabular osteotomy (PAO) at Cappagh National Orthopaedic Hospital. The procedure was first carried out in 1998, and a total of 85 PAOs have been performed in 79 patients. The mean follow-up was 42 months (range 6-84 months). There were 72 females and 7 males with a mean age at the time of the operation of 22.9 years (range, 14-41 years). The preoperative diagnosis was developmental hip dysplasia in 80 hips, Legg-Calve-Perthes disease in one hip, congenital coxa vara in three hips, and slipped capital femoral epiphysis in one hip. The average Merle d’Aubigne score increased from 12.4 points preoperatively to 16 points at latest followup. The lateral center edge angle of Wiberg was between – 20 and +28 before surgery and was improved from 12 to 48 (average 30 degrees) following PAO. While, the anterior center edge angle of Lequesne and de Seze was between – 22 and +35 preoperatively and was improved by an average of 28 degrees (range, 17 – 40) postoperatively. The acetabular index angle decreased from an average of 24.8 preoperatively to 8.4 postoperatively. Clinical follow-up revealed that 77% of patients had no or mild pain, 33% of patients had a limp and 64% of patients were unlimited in physical activity, representing a markedly improved clinical outcome. Four patients underwent subsequent total hip arthroplasty. The short term results in this group of patients treated with PAO show reliable radiographic correction of deformity and improved clinical scores. The study reflects the learning curve associated with performing this procedure and the results that can be expected with a smaller clinical case-load than described in previous studies. We suggest that PAO may safely be carried out at a non-super-specialized institution provided the surgeons have sufficient experience and patients are selected appropriately.