Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

SILENCING DKK1 EXPRESSION RESCUES DEXAMETHASONE-INDUCED BONE LOSS IN VITRO



Abstract

Osteoporosis is a common skeletal disorder characterised by a reduced bone mass and a progressive microarchitectural deterioration in bone tissue leading to bone fragility and susceptibility to fracture. The Wnt/β-catenin pathway is a major signaling cascade in bone biology, playing a key role in regulating bone development and remodeling, with aberrations in signalling resulting in disturbances in bone mass.

Our objectives were to assess the gene expression profile of primary human osteoblasts (HOBs) exposed to dexamethasone with a view to identifying key genes driving bone mass regulation and to assess the effects of the Wnt antagonist Dickkopf-1 (Dkk1) on the bone profile of primary human osteoblasts exposed in vitro to dexamethasone.

HOBs were cultured in vitro and exposed to 10–8M dexamethasone over a time course of 4hr, 12hr and 24hr. RNA isolation, cDNA synthesis, in vitro transcription and microarray analysis were performed. Microarray data was validated by quantitative real time RT-PCR. Dkk1 expression was silenced using small interfering RNA (siRNA). Quantitative RT-PCR was performed to confirm gene knockdown. Control and Dex-treated HOBs were compared with respect to bone turnover. Markers of bone turnover analyzed included alkaline phosphatase activity, calcium deposition, osteocalcin expression, along with cell proliferation and cellular apoptosis.

Global changes in HOB gene expression were elicited by dexamethasone.

Development associated gene pathways were co-ordinately dysregulated with the expression profile of key genes of the Wnt Pathway significantly altered. Dkk1 expression in HOBs was increased in response to dexamethasone exposure with an associated reduction in alkaline phosphatase activity, calcium deposition and osteocalcin expression. Silencing of Dkk1 expression, as confirmed by quantitative RT-PCR, was associated with an increase in alkaline phosphatase activity and calcium deposition, along with increased cell proliferation and reduced cellular apoptosis.

Dkk1 is an antagonist of Wnt/β-catenin signalling and plays a key role in regulating bone development and remodeling. Silencing the expression of Dkk1 in primary human osteoblasts has been shown to rescue the effects of dexamethasone-induced bone loss in vitro. The pharmacological targeting of the Wnt/β-catenin signaling pathway offers an exciting opportunity for the development of novel anabolic bone agents to treat osteoporosis and disorders of bone mass.

Correspondence should be addressed to: EFORT Central Office, Technoparkstrasse 1, CH – 8005 Zürich, Switzerland. Email: office@efort.org