Although there are various pelvic osteotomies for acetabular dysplasia of the hip, shelf operations offer effective and minimally invasive osteotomy. Our study aimed to assess outcomes following modified Spitzy shelf acetabuloplasty. Between November 2000 and December 2016, we retrospectively evaluated 144 consecutive hip procedures in 122 patients a minimum of five years after undergoing modified Spitzy shelf acetabuloplasty for acetabular dysplasia including osteoarthritis (OA). Our follow-up rate was 92%. The mean age at time of surgery was 37 years (13 to 58), with a mean follow-up of 11 years (5 to 21). Advanced OA (Tönnis grade ≥ 2) was present preoperatively in 16 hips (11%). The preoperative lateral centre-edge angle ranged from -28° to 25°. Survival was determined by Kaplan-Meier analysis, using conversions to total hip arthroplasty as the endpoint. Risk factors for joint space narrowing less than 2 mm were analyzed using a Cox proportional hazards model.Aims
Methods
Acridine orange (AO) demonstrates several biological activities. When exposed to low doses of X-ray radiation, AO increases the production of reactive radicals (radiodynamic therapy (AO-RDT)). We elucidated the efficacy of AO-RDT in breast and prostate cancer cell lines, which are likely to develop bone metastases. We used the mouse osteosarcoma cell line LM8, the human breast cancer cell line MDA-MB-231, and the human prostate cancer cell line PC-3. Cultured cells were exposed to AO and radiation at various concentrations followed by various doses of irradiation. The cell viability was then measured. In vivo, each cell was inoculated subcutaneously into the backs of mice. In the AO-RDT group, AO (1.0 μg) was locally administered subcutaneously around the tumour followed by 5 Gy of irradiation. In the radiation group, 5 Gy of irradiation alone was administered after macroscopic tumour formation. The mice were killed on the 14th day after treatment. The change in tumour volume by AO-RDT was primarily evaluated.Aims
Methods
Tocilizumab, an interleukin-6 (IL-6) receptor (IL-6R) targeting antibody, enhances the anti-tumour effect of conventional chemotherapy in preclinical models of cancer. We investigated the anti-tumour effect of tocilizumab in osteosarcoma (OS) cell lines. We used the 143B, HOS, and Saos-2 human OS cell lines. We first analyzed the IL-6 gene expression and IL-6Rα protein expression in OS cells using reverse transcription real time quantitative-polymerase chain reaction (RT-qPCR) analysis and western blotting, respectively. We also assessed the effect of tocilizumab on OS cells using proliferation and invasion assay.Aims
Methods
Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation. Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated.Aims
Methods
Accurate positioning of the acetabular component is essential for achieving the best outcome in total hip arthroplasty (THA). However, the acetabular shape and anatomy in severe hip dysplasia (Crowe type IV hips) is different from that of arthritic hips. Positioning the acetabular component in the acetabulum of Crowe IV hips may be surgically challenging, and the usual surgical landmarks may be absent or difficult to identify. We analyzed the acetabular morphology of Crowe type IV hips using CT data to identify a landmark for the ideal placement of the centre of the acetabular component as assessed by morphometric geometrical analysis and its reliability. A total of 52 Crowe IV and 50 normal hips undergoing total hip arthroplasty were retrospectively identified. In this CT-based simulation study, the acetabular component was positioned at the true acetabulum with a radiographic inclination of 40° and anteversion of 20° (Figure 1). Acetabular shape and the position of the centre of the acetabular component were analyzed by morphometric geometrical analysis using the generalized Procrustes analysis (Figure 2). To describe major trends in shape variations within the sample, we performed a principal component analysis of partial warp variables (Figure 3).Aims
Patients and Methods
Design evolution of total knee arthroplasty (TKA) has improved implant durability and clinical outcomes. However, it has been reported that some patients have limited satisfaction with their operated knees [1]. In view of better patient satisfaction, there have been growing interests in anatomically aligned TKA. The anatomically aligned TKA technique aims to replicate natural joint line of the patients [2][3]. However, restoration of natural joint line may be difficult for the knees with severe deformity, as their joint alignment with respect to bony landmarks at a time of surgery may be critically different from their pre-diseased state. The purpose of this study is to investigate alignment of the tibial growth plate with respect to tibial anatomical landmarks for possible application in estimation of pre-diseased joint alignment. Three-dimensional tibial models were created from CT scans of 22 healthy Japanese knees (M7:F15, Age 31.0±12.6 years) using Mimics (Materialise NV, Leuven, Belgium). The mid-sagittal plane of the tibia was defined by medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined by following three points; a dwell point of aligned femur on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface defined within sagittal plane that coincide with dwell point of femur on medial tibia. All measurements were made with respect to the mid-sagittal plane. The shape of the tibial growth plate (GP) was extracted using Livewire function and mask editing tools of Mimics. To determine 3D orientation of the GP, moment of inertia axes were calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).Introduction
Methods
Kinematically or anatomically aligned total knee arthroplasty (TKA) has been reported to provide improved clinical outcomes by replicating patient's original joint line [1][2]. It has been known that tibial (joint line) varus varies among patients, and the tibial varus would increase over progression of arthritis and bone remodeling. For those patients with significant deformity, the current tibial varus may significantly differ from its pre-diseased state. In this exploratory study, geometry and alignment of the tibial growth plate were measured with respect to tibial anatomical landmarks in order to better understand modes of tibial deformity and seek possible application in reconstructing pre-diseased joint alignment. CT scans of sixteen healthy Japanese knees (M6:F10, Age 31.9±13.9 years) were studied. Three-dimensional reconstruction models were created using Mimics 17 (Materialise, Leuven, Belgium). First, a mid-sagittal tibial reference plane, for comparing the varus/valgus orientation of the tibial plateau to that of the growth plate, was defined by the medial margin of the tibial tuberosity, origin of the PCL and center of the foot joint. The tibial plateau (or joint line plane) was determined from three points; dwell point of femur (aligned in extension) on lateral tibial articular surface, and two points at anterior and posterior rim of medial tibial articular surface sampled in the sagittal view and coinciding with dwell point of femur on medial tibia. Then, a three-dimensional model of the tibial growth plate was extracted using the Livewire function and mask editing tools in Mimics. To determine 3D orientation of the growth plate (GP), the vertical mass moment of inertia axis was calculated for the 3D model. The inertia axes were also determined for medial and lateral half of the GP (Figure 1).Introduction
Methods
Moderately crosslinked, thermally treated ultrahigh molecular weight polyethylene (UHMWPE) has to date demonstrated a good balance of wear resistance and mechanical properties. MARATHON™ Polyethylene (DePuySynthes Joint Reconstruction, Warsaw, IN) is made from polyethylene resin GUR 1050, gamma-irradiated at a dose of 5.0 Mrads to create crosslinking of polyethylene, and followed by a remelting process to eliminate free radicals for oxidative stability. 10-year clinical study [1] and laboratory wear simulation tests [2–3] have reported excellent wear performance of the MARATHON poly. There continues to be demand for improved head-to-shell ratio acetabular systems because larger head sizes have the benefits of increased stability and range of motion. The increased head-to-shell ratio is often times achieved by using a reduced liner thickness. One of the clinical concerns of thinner poly liners is the potential for rim fracture, particularly in the occurrences of rim loading or impingement at high cup angles [4–7]. This study investigated the performance of thinner poly liners to the challenge of high angle rim loading and neck-to-liner impingement. Three groups of ETO sterilized MARATHON polyethylene liners (ID/OD: 28/44, 32/48, and 36/52 mm) were paired with matching CoCrMo heads (n=6 each group). To simulate rim loading, liners were assembled in the metal shells tilted at 64° (Figure 1) with sinusoidal loading (0 to 5000N at 3Hz) in a 37°C water bath for 5-million cycles or until component failure, whichever occurred first. For neck-liner impingement testing, metal shells were potted at 54º (in the abduction/adduction plane with a ±10° of motion per ISO 14242–1 [8]) on a hip simulator (n=4 each group) using a physiological loading (max 3000N at 1Hz) for 3-million cycles (Figure 2). The impingement occurred at 64º during the simulated gait cycle (Figure 3). The liners were inspected every million cycles, using a high intensity light to search for signs of crack initiation and/or fractures. Both test methods were validated to be able to replicate liner fractures.Introduction
Materials and Methods
The current standard for alignment in total knee arthroplasty (TKA) is neutral mechanical axis within 3° of varus or valgus deviation [1]. This configuration has been shown to reduce wear and optimally distribute load on the polyethylene insert [2]. Two key factors (patient-specific hip-knee-ankle (HKA) angle and surgical component alignment) influence load distribution, kinematics and soft-tissue strains across the tibiofemoral (TF) joint. Improvements in wear characteristics of TKA materials have facilitated a trend for restoring the anatomic joint line [3]. While anatomic component alignment may aid in restoring more natural kinematics, the influence on joint loads and soft-tissue strains should be evaluated. The purpose of the current study was to determine the effect of varus component alignment in combination with a variety of HKA limb alignments on joint kinematics, loads and soft-tissue strain. A dynamic three-dimensional finite element model of the lower limb of a TKA patient was developed. Detailed description of the model has been previously published [4]. The model included femur, tibia and patella bones, TF ligaments, patellar tendon, quadriceps and hamstrings, and was virtually implanted with contemporary cruciate-retaining fixed-bearing TKA components. The model was initially aligned in ideal mechanical alignment with neutral HKA limb alignment. A design-of-experiments (DOE) study was performed whereby component placement was altered from neutral to 3° and 7° varus alignment, and HKA angle was altered from neutral to ±3° and ±7° (valgus and varus) (Figure 1).Introduction
Methods
Highly cross-linked polyethylene (HXLPE) was developed to reduce the wear of articular-bearing surfaces in total hip arthroplasty (THA). This study aimed to compare the mean linear wear of HXLPE with a 22.225 mm diameter zirconia head with that of conventional polyethylene (CPE) with a 22.225 mm diameter ortron head. A prospective cohort study performed on 93 patients (113 hips) who had undergone primary cemented THAs at our hospital between January 2001 and December 2003. The subject population included 85 females and 8 males with a mean age of 58.0 years (22 to 78) at the time of surgery. The mean follow-up period was 10.2 years (9 to 12). We randomly used two types of implants: the HXLPE cup with a 22.225 mm diameter zirconia head (Kyocera Medical, Osaka, Japan) in 60 hips (HXLPE group), and the CPE cup with a 22.225 mm diameter ortron head (DePuy International, Leeds, UK) in 53 hips (CPE group). Linear wear (penatration) by computer-assisted method with PolyWare software (Draftware Inc, Indiana, USA) was measured at 10 years. Anteroposterior radiographs were evaluated for osteolysis or component loosening defined by the criteria of Hodgkinson et al. Analysis of covariance using the general linear models procedure was carried out to determine the linear wear rate difference between the groups after adjusting for variables (age at surgery, sex, body mass index, vertical distance, horizontal distance, cup inclination, and cup anteversion) as covariates. The differences were considered significant when the p value was <0.05.Introduction
Materials and Methods
Antibiotic-loaded acrylic cement (ALAC) is employed in the treatment or prevention of infected total hip arthroplasty (THA). We have administered vancomycin (VCM) as the ALAC for the treatment of THAs with methicillin-resistant Staphylococcus aureus, or for the prevention of THAs with high risks. This study aimed to evaluate the serum concentration of VCM from ALAC in THA or cement beads. Between December 2013 and February 2014, 16 hips (16 patients) underwent application of the ALAC including VCM at our institution. Two hips were used for the treatment of infection, in the first stage of two-staged revision THAs (i.e., cement beads). Two hips were used for the both treatment and prevention of infection, in one-staged revision THAs. Twelve hips were used for the prevention of infection, in aseptic revision THAs or primary THAs with high risks. Patients were classified into two groups depending on the VCM concentration of ALAC, as follows: high-dose group (2 hips), average 4.4% (3.8–5.0%); low-dose group (14 hips), average 1.6% (1.3–2.5%). The amount of VCM placed as ALAC into the hip was calculated by using the remaining ALAC. The serum concentration of VCM was evaluated at 1 day, 4 days, 7 days, and 28 days after surgery. Statistical analysis was performed by using the Introduction
Methods
A large number of total knee arthroplasty (TKA) patients, particularly in Japan, India and the Middle East, exhibit anatomy with substantial proximal tibial torsion. Alignment of the tibial components with the standard anterior-posterior (A-P) axis of the tibia can result in excessive external rotation of the tibial components with respect to femoral component alignment. This in turn influences patellofemoral (PF) mechanics and forces required by the extensor mechanism. The purpose of the current study was to determine if a rotating-platform (RP) TKA design with an anatomic patellar component reduced compromise to the patellar tendon, quadriceps muscles and PF mechanics when compared to a fixed-bearing (FB) design with a standard dome-shaped patellar component. A dynamic three-dimensional finite element model of the knee joint was developed and used to simulate a deep knee bend in a patient with excessive external tibial torsion (Figure 1). Detailed description of the model has been previously published [1]. The model included femur, tibia and patellar bones, TKA components, patellar ligament, quadriceps muscles, PF ligaments, and nine primary ligaments spanning the TF joint. The model was virtually implanted with two contemporary TKA designs; a FB design with domed patella, and a RP design with anatomic patella. The FB design was implanted in two different alignment conditions; alignment to the tibial A-P axis, and optimal alignment for bone coverage. Four different loading conditions (varying internal-external (I-E) torque and A-P force) were applied to the model to simulate physiological loads during a deep knee bend. Quadriceps muscle force, patellar tendon force, and PF and TF joint forces were compared between designs.Introduction
Methods
Total knee arthroplasty (TKA) is one of the most successful and beneficial treatments for osteoarthritic knees. We have developed posterior-stabilized (PS) total knee prosthesis for Asian patients, especially Japanese patients, and have used it since November, 2010. The component was designed based on the CT images of osteoarthritic knees, aiming to achieve deep flexion and stability. The purpose of this study was to analyze We analyzed a total of 28 knees implanted with PS TKAs: Fourteen knees with the new PS prosthesis (group A), and the other fourteen knees with a popular PS prosthesis as a control group (group B). Preoperative data of both groups were not significantly difference. Flat-panel radiographic knee images were recorded during five static knee postures including full extension standing, lunge at 90° and maximum flexion, and kneeling at 90° and maximum flexion. The three-dimensional position and orientation of the implant components were determined using model-based shape matching techniques. The results of this shape-matching process have standard errors of approximately 0.5° to 1.0° for rotations and 0.5 to 1.0 mm for translations in the sagittal plane. Unpaired t-tests were used for statistical analysis and probability values less than 0.05 were considered significant.INTRODUCTION
METHODS
MCP-1/ CCR2 axis at the early phase plays a pivotal role in the fracture healing. Inflammation plays a pivotal role in fracture healing. Among them, chemokines play key roles in inflammation. Monocyte chemotactic protein-1 (MCP-1), via its receptor C-C chemokine receptor 2 (CCR2), acts as a potent chemoattractant for various cells to promote migration from circulation to inflammation site. Thus, the importance of MCP-1/CCR2 axis in fracture healing has been suggested. However, the involvement of MCP-1/CCR2 axis tofracture site is not fully elucidated. PCR Array: The expression of MCP-1 and MCP-3 had increased on day 2 than 0 or 7 in the rib fracture healing. Immunohistochemistry Staining: To verify the localization of MCP-1 expression, we examined the Wild type (WT)-mouse rib fracture healing. We observed high expression of MCP-1 and MCP-3 at the periosteum and the endosteum on post-fracture day 3. Summary Statement
Results
We measured scapulothoracic motions during humeral abduction with different humeral rotations in healthy subjects and whole cadaver models and clarified that humeral rotation significantly influenced scapular kinematics. Scapular dyskinesis has been observed in various shoulder disorders such as impingement syndrome or rotator cuff tears. However, the relationship between scapular kinematics and humeral positions remains unclear. We hypothesised that humeral rotation would influence scapular motions during humeral abduction and measured scapular motion relative to the thorax in the healthy subjects and whole cadavers.Summary Statement
Introduction
The diagnosis of implant-associated infections is challenging, and the conventional culturing of periprosthetic tissue has been the gold standard for diagnosis of implant-associated infections. However, conventional diagnostic tests are inaccurate because the pathogenesis of implant-associated infection is related to microorganisms growing in biofilms. We compared culture of samples obtained by sonication of explanted implants to dislodge adherent bacteria from implants with conventional culture of periprosthetic tissue. The purpose of this study is to evaluate the results of sonication that is microbiological diagnostic method for implant-associated infections. Between January 2013 and April 2013, a total of 19 consecutive patients underwent the removal of implants at our institution. There were 15 women and 4 men with a mean age of 71 years (32 to 90) at the time of the operation. Implants were removed because of aseptic loosening in 9 patients, infection in 6 patients, necrosis in 2 patients, dislocation in 1 patient and implant fracture in 1 patient. Removed implants, including 17 joint prostheses and 2 fracture fixation devices, were subjected to sonication in a BactoSonic (BANDELIN, Germany). Preoperative bacterial culture, intraoperative conventional culture of periprosthetic tissue, intraoperative culture of sonicate-fluid, and pathological examination were assessed.Introduction:
Materials and Methods:
Moderately crosslinked polyethylene maintains a balance of wear resistance and mechanical properties. The GVF poly was manufactured from GUR1020 UHMWPE bars, sealed in vacuumed foil package, and gamma sterilized at 4 Mrads. The MARATHON® polyethylene inserts were manufactured from GUR1050 UHMWPE bars, crosslinked by gamma irradiation at 5 Mrad, and followed by a remelting process that eliminates free radicals. The final sterilization method is gas plasma (GP) or ethylene oxide (EtO). Both methods will not introduce free radicals. Previous studies have shown MARATHON polyethylene (GP sterilized) with 83% lower wear than conventional polyethylene in a simulation test [1], compared to a 10-year clinical study that showed 77% wear reduction [2]. There is no study to compare the wear performance of MARATHON (EtO sterilized) and conventional poly. Four groups of polyethylene inserts (Table 1) were paired with matching femoral heads that were manufactured from CoCrMo (ASTM F1537) with diameters of 28, 32, and 36 mm. The inserts were chosen to have similar thickness at the dome for MARATHON, while for GVF it was the largest head size available. Wear testing was performed on an AMTI Hip Simulator per the ISO 14242-1 standard [3] at 1 Hz using the described inputs (Table 2), which provide a larger range of motion than the ISO standard. The cups were mounted in accordance with ISO 14242-1 using custom fixturing and secured with cement while the femoral heads were mounted on a vertical taper support. Testing was performed in 25% bovine calf serum at 37 ± 2°C. Wear of the inserts was determined gravimetrically. Finally, wear rates were calculated by linear regression and then compared between the groups using ANOVA analysis (α = 0.05).Introduction:
Materials and Methods:
Although proximal tibia vara is physiologically and pathologically observed, it is difficult to measure the varus angle accurately and reproducibly due to inaccuracy of the radiograph because of rotational and/or torsional deformities. Since tibial coronal alignment in TKA gives influence on implant longevity, intra- or extra-medurally cutting guide should be set carefully especially in cases with severe tibia vara. In this context, we measured the proximal tibial varus angle by introducing 3D-coordinate system. Three-dimensional models of 32 tibiae (23 females, 9 males, 71.2 ± 7.8 y/o) were reconstructed from CT data of the patients undergoing CT-based navigation assisted TKA. Clinically relevant mid-sagittal plane is defined by proximal tibial antero-posterior axis and an apex of the tibial plafond. After the cross-sectional contours of the tibial canal were extracted, least-square lines were fitted to define the proximal diaphyseal and the metaphyseal anatomical axis. The proximal tibia vara was firstly investigated in terms of distribution of proximal anatomical axis exits at the joint surface. TVA1 and TVA2 were defined to be a project angle on the coronal plane between the metaphyseal tibial anatomical axis and the proximal diaphyseal anatomical axis, and that between the metaphyseal tibial anatomical axis and the tibial functional axis, respectively. The correlations of each angle with age and femoro-tibial angle (FTA) were also examined. The proximal anatomical axis exits distributed 4.3 ± 1.7 mm medially and 17.1 ± 3.4 mm anteriorly. TVA1 and TVA2 were 12.5 ± 4.5°(4.4?23.0°) and 11.8 ± 4.4° (4.4?22.0°), respectively. The correlations of FTA with TVA1 (r=0.374, p<0.05) and TVA2 (r=0.439, p<0.05) were statistically significant.Materials & Methods
Results
Atypical femoral fracture focused on relation of bisphosphonate use, frequently. However, the mechanism of atypical femoral fracture was not yet clarified. Atypical femoral fractures have been kept femoral shaft cortical thickness and BMD, practically. We hypothesized that atypical femoral fractures were associated with impaired bone quality and curvature of femoral shaft. We experienced four atypical femoral fractures. One was subtrochanteric and three were shaft fracture. Two cases received bisphosphonate therapy for 3–5 years. BMD, bone metabolic markers, and bone quality markers were evaluated. Histomorphometry and collagen cross-link analysis were performed. Curvature of femoral shaft and 3-D finite element analysis in one incomplete fracture case were assessed.Introduction
Materials & Methods
The previous bioabsorbable plates have had several issues with regard to clinical usage for fractures. The aims of this study were to demonstrate the clinical results of novel bioabsorbable plates made of hydroxyapatite/poly-L-lactide and titanium plates for metacarpal fractures and to compare mechanical properties of them in a fracture model. The subjects were 33 metacarpal diaphyseal fractures of 27 consecutive patients treated with bioabsorbable plates. The mean age was 35.8 (17–78), 22 male and 5 female was included. The mean follow up period was 7.4months (2–14). All cases achieved bone union, and there were no complication especially for aseptic swelling etc. Furthermore, we compared the mechanical properties of bioabsorbable and titanium plates. There were no significant differences in 6 month postoperative clinical results including total range of active motion and % of the contralateral grip strength between patients receiving bioabsorbable and titanium plates. The bending strength and stiffness of one-third tubular bioabsorbable plate constructs were comparable with those of titanium plates for 1.5mm screws, and those of semi-tubular bioabsorbable plates were comparable with those of titanium plates for 2.0mm screws. The torsional strength of semi-tubular bioabsorbable plates was significantly greater than that of titanium plates for 2.0mm screws.