Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 4 - 4
1 Jun 2012
Ando Y Noda I Miyamoto H Akiyama T Shimazaki T Yonekura Y Miyazaki M Mawatari M Hotokebuchi T
Full Access

Bacterial infection related to prosthetic replacement is one of the serious types of complications. Recently, there has been a greater interest in antibacterial biomaterials. In order to reduce the incidence of replacement-associated infections, we developed a novel coating technology of Hydroxyapatite (HA) containing silver (Ag). We reported the Ag-HA coating showed high antibacterial activity against E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) under static condition. However, human bodies have a circulating body fluid, which is not a static condition. And the growth and the maturation of biofilm, which is said that a common course of persistent infections at a surgical site, are enhanced by the flow of broth in culture environment. Therefore, we evaluated whether the Ag-HA coating inhibits the biofilm formation on its surface or not by a biofilm-forming test under flow condition in this study.

Ag-HA or HA powder was sprayed onto the commercial pure titanium disks using a flame spraying system. The HA coating disks were used as negative control. The biofilm-forming methicillin sensitive S. aureus (BF-MSSA; Seattle 1945) strain and the BF-MRSA (UOEH6) strain were used. The pre-culture bacterial suspension (about 105 colony forming units; CFU) was inoculated onto the Ag-HA and HA coating disks. After cultivation at 37 °C for 1 h, the disks were rinsed twice with 500 μL sterile PBS (-) to eliminate the non-adherent bacteria. The number of the adherent bacteria on these disks was counted using culture method. After rinsing, the disks were transferred into petri-dish containing Trypto–Soy Broth (TSB) + 0.25% glucose with a stirring bar on the magnetic stirrer and they were cultured at 37°C for 7 days. In the meantime, the stirring bar was spun at 60 rounds per minute. Then, the disks were immersed in a fluorescent reagent to stain the biofilm. Finally, the biofilm on each disk was observed by a fluorescence microscope and the biofilm-covered rate on the surfaces of them was calculated using the NIH image software.

The number of the bacteria on these disks was not so different between Ag-HA and HA coating after rinsing. After biofilm-forming test, the coverage of the biofilm of BF-MSSA was 2.1% and 81.0% on the Ag-HA and HA coatings, respectively. Similarly, in the case of BF-MRSA, it was 7.7% and 72.0% on the Ag-HA and HA coatings, respectively. Though bacteria slightly adhered, biofilm was hardly observed on the Ag-HA coating. The biofilm on the HA coating was extensive and mature. The inhibition effect of biofilm formation on the Ag-HA coating might be ascribed to the antibacterial effect by Ag ions released from the coating. Because Ag ions have a broad spectrum of antibacterial activity against pathogens, including biofilm forming bacteria, they inhibited the biofilm formation on the Ag-HA coating by killing adherent bacteria. Even in a flow condition, it was suggested that the AgHA shows the antibacterial activity, though the conditions in this work are different from those in living body.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_I | Pages 93 - 94
1 Mar 2010
Noda I Ando Y Miyamoto H Shimazaki T Yonekura Y Miyazaki M Mawatari M Hotokebuchi T
Full Access

Bacterial infection related to orthopaedic implants is a significant complication today. One of the ways to reduce the incidence of implant-associated infections is assumed to give antibacterial activity to surface of implant itself. We focused attention on Ag, because it has a broad antibacterial spectrum, strong antimicrobial activity and low toxicity. In the previous works, sputtering, electrochemically deposition and sol-gel coating of Ag-containing hydroxyapatite (HA) have been reported. However, since practical technique of HA coating widely used for medical and dental implants has been the “thermal spraying” technique over the last two decades, we aimed at developing the novel thermal spraying technology for Ag-HA coating with antibacterial activity. In this study, physical and chemical properties, in vitro antibacterial activity, inhibition activity of bacterial attachment, HA-forming ability, cytotoxicity and release of Ag ions of the thermal-sprayed Ag-HA coating were evaluated.

HA powder containing 3wt % of silver oxide (Ag2O) was sprayed on surface of titanium disks by the thermal spraying method using acetylene torch. SEM images showed a typical structure of the thermal-sprayed coating and the X-ray diffraction (XRD) pattern of the coating showed an amorphous structure. Ag residue in the coating was determined by the elementary analysis. The coating showed strong antibacterial activity and inhabitation activity of bacterial attachment to the methicillin-resistant Staphylococcus aureus (MRSA) in fetal bovine serum (FBS). On the other hand, the coating showed fast HA-forming ability in simulated body fluid (SBF) and no cytotoxicity related to Ag contained in the coating. Therefore, it is expected that the thermal-sprayed Ag-HA coating provides antibacterial and bone-bonding ability on the surface of the implant itself. In addition, though the HA coating is generally liable to adhere bacteria, the thermal-sprayed Ag-HA coating overcomes this problem.

Pre-evaluation of release of Ag ions from the Ag-containing ceramic powders indicated that the releasing behavior of Ag ions in SBFs is dependent on the existing form of Ag in the Ag-containing material. It is assumed that most of Ag components in the Ag-HA coating are not retained as metallic Ag but as Ag2O in the amorphous layer. Time-course release tests of Ag ions from the coating in FBS showed a large release rate of Ag ions until 24 h after the immersion. It is expected that the Ag-HA coating could show strong antibacterial activity at the early post-operative stage. In the repeated release testing, the amount of released Ag ions was about 6500 ppb for the first release test, after which it gradually decreased. However, a significant release amount of Ag ions was observed even after the sixth repeat test. Therefore, it was assumed that the thermal-sprayed Ag-HA coating has a slow-release property of Ag ions in FBS.


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 304 - 304
1 May 2009
Ando Y Miyamoto H Noda I Shimazaki T Miyazaki M Mawatari M Hotokebuchi T
Full Access

Using thermal spraying technique, we developed a novel titanium material coated with hydroxyapatite (HA) containing silver (Ag). In this study, antibacterial activities of the material were examined both in vitro and in vivo.

Two different titanium test pieces were prepared. One is the test piece that was coated by HA containing Ag (HA-Ag) and the other is that was coated by HA only, used as a negative control. Antibacterial activity and efficacy of HA-Ag against Staphylococcus aureus, Escherichia coli, and biofilm-forming methicillin-resistant S. aureus (BF-MRSA) was examined by using the Japanese Industrial Standards test (JIS Z2801). Furthermore, surface area where BF-MRSA was attached and proliferated on the test pieces after 24 hours of incubation was calculated by means of scanning electron microscope (SEM). To investigate the antibacterial activity in vivo, the test pieces were inserted subcutisly into the back of SD rats, and BF-MRSA was inoculated into the inserted pieces. On the 7th day after the inoculation, the numbers of adherent bacteria to the pieces were countered by a sterile cotton-tipped swabs method.

By the JIS Z2801 test, HA-Ag showed 104 to 105 times stronger antibacterial activity than HA against all bacteria tested in this study. SEM studies revealed the HA-Ag coated material had 30 to 50 times smaller area of attached bacteria than control. In vivo study showed that viable bacterial numbers on surfaces of HA-Ag were 1000 times less than control. These results indicated that the HA-Ag coated materials have antibacterial activities both in vitro and in vivo.

Titanium coated with HA containing Ag has a possibility to be a novel antibacterial biomaterial.