Measuring strain in biological specimens has always been inherently difficult due to their shape and surface properties. Traditional methods such as strain gauges require contact and therefore have reinforcing effects, also the surface preparation can be time consuming and if proper fixation is not achieved the results will be inaccurate. Using a non contact method to measure strain such as photogrammetry has several advantages. The strain over the whole surface of a specimen can be mapped, depending on the field of view of the camera used. It has a large dynamic range, from microns to millimetres which can be decided upon at the post processing stage. Specimens can be tested to destruction without damaging any measurement equipment. Also there is considerably less set up time involved between testing different specimens once the system is in place. We aimed to test speckle photogrammetry, a method used in industry and fluid dynamics as a tool for assessing proximal femur fracture stability and repair techniques. A Zwick Roell materials testing machine was used to axially apply a staircase loading pattern to sawbones femora, simulating the load experienced by the femur when standing. Firstly an intact bone was tested then a set of three identical fractures of each of three common fracture configurations were produced by osteotomy. The first femur of each configuration was loaded un-repaired to failure; the remaining two were repaired using common techniques for that particular fracture type then also loaded to failure. The bone and fixation device were covered with stochastic, high contrast paint speckle prior to testing. This speckle pattern was recorded at regular load intervals by a digital camera which was attached to the materials testing machine via a rigid frame to eliminate any camera movement. These images were then transferred to a computer where they were converted to 8 bit bitmap images. Matlab was used to process the data from subsequent images to produce vector and colour maps of the displacements and strains over the entire visible surface of the proximal femur and to show the comparative displacements and strains experienced by the individual bone fragment and the fixation devices. Non contact optical strain measurement has proved itself to be a useful tool in assessing the stability of fractures and the repair techniques of these fractures. Additionally it can also be used to validate finite element models to compare theoretical and experimental results due to the similar data and graphic visualisation outputs which are produced by both techniques.
Distal radial fractures account for 17% of all fractures treated, with peaks in the bimodal distribution corresponding to young and senior patients. External fixation is one of the best techniques to allow quick patient recovery and is necessary for complex fractures, such as that of the distal radius. However, the safe removal time for these frames remains unclear. A conservative approach commonly leaves the external fixator in place for six weeks, which may be unnecessarily prolonged and lead to increased complications. The aim of this work is to develop a technique to quantify, objectively, a safe removal time for these frames. Studies have been conducted on external fixation of tibial fractures, however there are differences that do not allow transfer of these studies to the external fixation of distal radial fractures. These differences include configuration of the fixation frame, bone and fracture geometries, and the application and transfer of the load to the bone. In this work, the dynamic transfer of the load between the fractured bone and the fixator is investigated. An instrumented grip and a measuring device have been developed to monitor the axial force and displacement when the patient applies a load. Using measurements collected by the instrument and data specifying the frame geometry, a finite element model is used to calculate the load carried by the fixator and by the bone, and the rigidity of the new callus is determined. Plotting the rigidity on semi-logarithmic scale the healing rate can be established. This technique has been successfully verified in a laboratory simplified structure representative of bone fracture. The rigidity of several intra-gap materials has been estimated experimentally using the technique, and the results compared to the real value of the material. These measurements do not interfere in any way with the patient treatment and they can be collected from the first day after the operation. The technique has been tested on 14 volunteer patients and the increase in callus rigidity can be detected by measurements during treatment using the technique described. A randomised prospective study has been initiated to validate this technique and investigate the healing process. A positive outcome would enable the rigidity of the new callus bone and the healing rate to be monitored during clinical assessment. Any healing delay or non-union could be promptly detected, improving the quality of the treatment.