header advert
Results 1 - 3 of 3
Results per page:
Bone & Joint Research
Vol. 11, Issue 7 | Pages 453 - 464
20 Jul 2022
Wang H Shi Y He F Ye T Yu S Miao H Liu Q Zhang M

Aims

Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). Growth differentiation factor 11 (GDF11) is crucial in inhibiting the differentiation of bone marrow mesenchymal stem cells into adipocytes. However, whether GDF11 participates in the abnormal adipogenesis of chondrocytes in OA cartilage is still unclear.

Methods

Six-week-old female mice were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical staining (IHC), and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. Primary condylar chondrocytes of rats were stimulated with fluid flow shear stress (FFSS) and collected for oil red staining, immunofluorescence staining, qRT-PCR, and immunoprecipitation analysis.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 151 - 151
1 Jan 2016
Liu Q Zhou Y
Full Access

Objective

By retrospective analysis of clinical data, to find new risk factors for postoperative dislocation after total hip replacement and the dose-effect relationship when multiple factors work simultaneously.

Methods

A nested case-control study was used to collect the dislocated hips from 5513 primary hip replacement case from 2000 to 2012. Apart from the patients with given cause of dislocation, 39 dislocated hips from 38 cases were compared with 78 hip from 78 cases free from dislocation postoperatively, which matched by the admission time. The factors that may affect the prosthetic unstable was found by the univariate analysis, and then they were performed multivariate logistic regression analysis and evaluation of a dose-effect factors.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 425 - 425
1 Nov 2011
Liu Q Zhou Y Xu H Tang J Guo S Tang Q
Full Access

Prosthetic reconstruction of high-riding hips is technically demanding. Insufficient bony coverage and osteopenic bone stock frequently necessitate transacetabular screw fixation to augment primary stability of the metal shell. We sought to determine the validity of the previously reported quadrant system, and if needed, to define a specialized safe zone for augmentation of screw fixation to avoid vascular injuries in acetabular cup reconstruction for high-riding hips.

Volumetric data from computed tomography enhancement scanning and CT angiography of eighteen hips (twelve patients) were obtained and input into a three-dimensional image-processing software. Bony and vascular structures were reconstructed three-dimensionally; we virtually reconstructed a cup in the original acetabulum and dynamically simulated transacetabular screw fixation. We mapped the hemispheric cup into several areas and, for each, measured the distance between the virtual screw and the blood vessel.

We found that the rotating centers of the cups shifted more anterior-inferiorly in high-riding hips than those in ordinary cases, and thus the safe zone shifted as well. Screw fixation guided by the quadrant system frequently injured the obturator blood vessels in high-riding hips. We then defined a specialized safe zone for transacetabular screw fixation for high-riding hips.

We conclude that the quadrant system can be misleading and of less value in guiding screw insertion to augment metal shells for high-riding hips. A new safe zone specific to high-riding hips should be used to guide transacetabular screw fixation in these cases.