Anterior approach total hip arthroplasty (AA-THA) has a steep learning curve, with higher complication rates in initial cases. Proper surgical case selection during the learning curve can reduce early risk. This study aims to identify patient and radiographic factors associated with AA-THA difficulty using Machine Learning (ML). Consecutive primary AA-THA patients from two centres, operated by two expert surgeons, were enrolled (excluding patients with prior hip surgery and first 100 cases per surgeon). K- means prototype clustering – an unsupervised ML algorithm – was used with two variables - operative duration and surgical complications within 6 weeks - to cluster operations into difficult or standard groups. Radiographic measurements (neck shaft angle, offset, LCEA, inter-teardrop distance, Tonnis grade) were measured by two independent observers. These factors, alongside patient factors (BMI, age, sex, laterality) were employed in a multivariate logistic regression analysis and used for k-means clustering. Significant continuous variables were investigated for predictive accuracy using Receiver Operator Characteristics (ROC). Out of 328 THAs analyzed, 130 (40%) were classified as difficult and 198 (60%) as standard. Difficult group had a mean operative time of 106mins (range 99–116) with 2 complications, while standard group had a mean operative time of 77mins (range 69–86) with 0 complications. Decreasing inter-teardrop distance (odds ratio [OR] 0.97, 95% confidence interval [CI] 0.95–0.99, p = 0.03) and right-sided operations (OR 1.73, 95% CI 1.10–2.72, p = 0.02) were associated with operative difficulty. However, ROC analysis showed poor predictive accuracy for these factors alone, with area under the curve of 0.56. Inter-observer reliability was reported as excellent (ICC >0.7). Right-sided hips (for right-hand dominant surgeons) and decreasing inter-teardrop distance were associated with case difficulty in AA-THA. These data could guide case selection during the learning phase. A larger dataset with more complications may reveal further factors.
Superior teamwork in the operating theatre is associated with improved technical performance and clinical outcomes. Yet modern rota patterns, workforce shortages, and increasing complexity of surgery, means that there is less familiarity between staff and the required choreography. Immersive Virtual Reality (iVR) can successfully train surgical staff individually, however iVR team training has yet to be investigated. We aimed to design a multiplayer iVR platform for anterior approach total hip arthroplasty (AA-THA) and assess if multiplayer iVR training was superior to single player training for acquisition of both technical and non-technical skills. An iVR platform with choreographed roles for the surgeon and scrub nurse was developed using Cognitive Task Analysis. Forty participants were randomised to individual or team iVR training. Individually- trained participants practiced alongside virtual avatar counterparts, whilst teams trained live in pairs. Both groups underwent five iVR training sessions over 6-weeks. Subsequently, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated theatre. Teams performed together and individually trained participants were randomly paired up. Videos were marked by two blinded assessors recording the NOTSS, NOTECHS II and SPLINTS scores - validated technical and non-technical scores assessing surgeon and scrub nurse skills. Secondary outcomes were procedure time and number of technical errors. Teams outperformed individually trained participants for non-technical skills in the real-world assessment (NOTSS 13.1 ± 1.5 vs 10.6 ± 1.6, p =0.002, NOTECHS-II score 51.7 ± 5.5 vs 42.3 ± 5.6, p=0.001 and SPLINTS 10 ± 1.2 vs 7.9 ± 1.6, p = 0.004). They completed the assessment 28.1% faster (27.2 minutes ± 5.5 vs 41.8 ±8.9, p<0.001), and made fewer than half the number of technical errors (10.4 ± 6.1 vs 22.6 ± 5.4, p<0.001). Multiplayer training leads to faster surgery with fewer technical errors and the development of superior non-technical skills for anterior approach total hip arthroplasty. The convention of surgeons and nurses training separately, but undertaking real complex surgery together, can be supplanted by team training, delivered through immersive virtual reality.
Superior team performance in surgery leads to fewer technical errors, reduced mortality, and improved patient outcomes. Scrub nurses are a pivotal part of this team, however they have very little structured training, leading to high levels of stress, low confidence, inefficiency, and potential for harm. Immersive virtual reality (iVR) simulation has demonstrated excellent efficacy in training surgeons. We tested the efficacy of an iVR curriculum for training scrub nurses in performing their role in an anterior approach total hip arthroplasty (AA-THA). Sixty nursing students were included in this study and randomised in a 1:1 ratio to learning the scrub nurse role for an AA-THA using either conventional training or iVR. The training was derived through expert consensus with senior surgeons, scrub nurses and industry reps. Conventional training consisted of a 1-hour seminar and 2 hours of e-learning where participants were taught the equipment and sequence of steps. The iVR training involved 3 separate hour-long sessions where participants performed the scrub nurse role with an avatar surgeon in a virtual operation. The primary outcome was their performance in a physical world practical objective assessment with real equipment. Data were confirmed parametric using the Shapiro-Wilk test and means compared using the independent samples student's t-test. 53 participants successfully completed the study (26 iVR, 27 conventional) with a mean age of 31±9 years. There were no significant differences in baseline characteristics or baseline knowledge test scores between the two groups (p>0.05). The iVR group significantly outperformed the conventionally trained group in the real-world assessment, scoring 66.9±17.9% vs 41.3±16.7%, p<0.0001. iVR is an easily accessible, low cost training modality which could be integrated into scrub nursing curricula to address the current shortfall in training. Prolonged operating times are strongly associated with an increased risk of developing serious complications. By upskilling scrub nurses, operations may proceed more efficiently which in turn may improve patient safety.
Prosthetic joint infection (PJI) is a serious complication following joint replacement. Antiseptic solutions are often used for intraoperative wound irrigation particularly in cases of revision for PJI. Antiseptic irrigation is intended to eradicate residual bacteria which may be either free floating or in residual biofilm although there is no clear clinical efficacy for its use. Also, reviewing the scientific literature there is discordance in in vitro results where some studies questions antiseptic efficacy whilst others suggest that even at low concentration antiseptic agents are effective at eradicating bacterial biofilms. The aim of this in vitro study was to establish the efficacy of undiluted antiseptic agents at eradication of a typical PJI forming biofilm and determine the importance of an antiseptic neutralisation step in this assessment. Mature When PBS was used to rinse/suspend the biofilm a highly significant, 7.5 and 4.1, mean log reduction in biofilm vitality was observed from the control, for CHL 4% and PI 10%, respectively. However, when NB was the rinse/suspension solution the apparent antiseptic biofilm eradication efficacy was replaced with a statistically significant but clinically irrelevant less the one log-reduction in biofilm vitality. Clinical antiseptic agents are ineffective at eradicating
Prosthetic joint infection (PJI) is an important cause of arthroplasty failure. There is no method to disclose the presence or map the distribution of the in vivo biofilm on infected arthroplasty despite the recognition that such a tool would aid intraoperative decision making and improve novel implant design. The aim of this study was to test the efficacy of four dyes to disclose bacterial biofilm in an in vitro setting. Four dyes with known affinity to bacterial biofilm were assessed to determine their efficacy to disclose biofilms in an in vitro model of PJI. Three dyes (Methylene Blue, Indocyanine Green and Rose Bengal) have established clinical utility and the other, Thioflavin T, is known to fluoresce in the presence of amyloid a known biofilm constituent. The efficacy of the dyes to discriminate between biofilms of different mass and vitality (high, low or the non-inoculated control) was determined after three minutes exposure of the biofilm to the dyes by calculating the amount of dye bound to the biofilm via sonication and spectrophotometry, quantification of the dye through standardised photographic imaging of the stained biofilm and the calculation of inter-observer agreement. Each experiment was performed in triplicate for each dye and repeated three times. For each of the disclosure dyes assessed there was significant difference demonstrated between the amount of dye bound to the high and low mass biofilms (p<0.05) as well as in the amount of dye quantified in photographic and fluorescent image assessment between biofilms of differing mass (p<0.01). There was excellent agreement between three observers, for each disclosure dye, in determining the biofilm mass of each stained disc (Kappa>0.91). This study demonstrates the efficacy of biofilm disclosure dyes in an in vitro PJI model which could one day be used to disclose and map the clinical biofilm in vivo.
Current evidence suggests that superior surgical team performance is linked to fewer intra-operative errors, reductions in mortality and even improved patient outcomes. Virtual reality has demonstrated excellent efficacy in training surgeons and scrub nurses individually, however its impact on training teams is currently unknown. This study aimed to assess if training together (scrub nurse and surgeon) in an innovative multiplayer virtual reality program was superior to single player training for novices learning anterior approach total hip arthroplasty (AA-THA). 40 participants (20 novice surgeons (CT1-ST3 level) and 20 novice scrub nurses) were enrolled in this study and randomised to individual or team virtual reality training. Individually-trained participants played with virtual avatar counterparts, whilst teams trained live in pairs (surgeon and scrub nurse). Both groups underwent 5 VR training sessions over 6 weeks. Subsequently, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated operating theatre. Teams performed together and individually-trained participants were randomly paired up with a solo player of the opposite role. Videos of the assessment were marked by two blinded expert assessors. The primary outcome was team performance as graded by the validated NOTECHs II score. Secondary outcomes were procedure time and number of technical errors from an expert pre-defined protocol. Teams outperformed individually-trained participants for non-technical skills in the real-world assessment (NOTECHS-II score 50.3 ± 6.04 vs 43.90 ± 5.90, p=0.0275). They completed the assessment 28.1% faster (31.22 minutes ±2.02 vs 43.43 ±2.71, p=0.01), and made close to half the number of technical errors when compared to the individual group (12.9 ± 8.3 vs 25.6 ± 6.1, p=0.001). Multiplayer, team training appears to lead to faster surgery with fewer technical errors and the development of superior non-technical skills.
Evidence supporting the use of virtual reality (VR) training in orthopaedic procedures is rapidly growing. However, the impact of the timing of delivery of this training is yet to be tested. We aimed to investigate whether spaced VR training is more effective than massed VR training. 24 medical students with no hip arthroplasty experience were randomised to learning the direct anterior approach total hip arthroplasty using the same VR simulation, training either once-weekly or once-daily for four sessions. Participants underwent a baseline physical world assessment on a saw bone pelvis. The VR program recorded procedural errors, time, assistive prompts required and hand path length across four sessions. The VR and physical world assessments were repeated at one-week, one-month, and 3 months after the last training session. Baseline characteristics between the groups were comparable (p > 0.05). The daily group demonstrated faster skills acquisition, reducing the median ± IQR number of procedural errors from 68 ± 67.05 (session one) to 7 ± 9.75 (session four), compared to the weekly group's improvement from 63 ± 27 (session one) to 13 ± 15.75 (session four), p < 0.001. The weekly group error count plateaued remaining at 14 ± 6.75 at one-week, 16.50 ± 16.25 at one-month and 26.45 ± 22 at 3-months, p < 0.05. However, the daily group showed poorer retention with error counts rising to 16 ± 12.25 at one-week, 17.50 ± 23 at one-month and 41.45 ± 26 at 3-months, p<0.01. A similar effect was noted for the number of assistive prompts required, procedural time and hand path length. In the real-world assessment, both groups significantly improved their acetabular component positioning accuracy, and these improvements were equally maintained (p<0.01). Daily VR training facilitates faster skills acquisition; however weekly practice has superior skills retention.
Non-technical skills including teamwork play a pivotal role in surgical outcomes. Virtual reality is effective at improving technical skills, however there is a paucity of evidence on team-based virtual reality (VR) training. This study aimed to assess if multiplayer virtual reality training was superior to solo training for acquisition of both technical and non-technical skills in learning the complex anterior approach total hip arthroplasty operation. 10 novice surgeons and 10 novice scrub nurses, were randomised to solo or team virtual reality training to perform anterior approach total hip arthroplasty. Solo participants trained with virtual avatar counterparts, whilst teams trained in pairs (surgeon and scrub nurse). Both groups underwent 5 VR training sessions over 6 weeks. Then, they underwent a real-life assessment in which they performed AA-THA on a high-fidelity model with real equipment in a simulated operating theatre. Teams performed together and solo participants were randomly paired up with a solo player of the opposite role. Videos of the assessment were marked by two blinded expert assessors. Outcomes were procedure time, procedural errors from an expert pre-defined protocol and acetabular component positioning. Non-technical skills were assessed using the NOTECHs II and NOTSS scores.Abstract
Objectives
Methods
Evidence supporting the use of immersive virtual reality (iVR) training in orthopaedic procedures is rapidly growing. However, the impact of the timing of delivery of this training is yet to be tested. This study investigated whether spaced iVR training is more effective than massed iVR training for novices learning hip arthroplasty. 24 medical students with no hip arthroplasty experience were randomised to learning total hip arthroplasty using the same iVR simulation training either once-weekly or once-daily for four sessions. Participants underwent a baseline physical world assessment to orientate an acetabular component on a saw bone pelvis, and a baseline knowledge test. In iVR, we recorded procedural errors, time, numbers of prompts required and path lengths of the hands and head across 4 sessions. To assess skill retention, the iVR and baseline physical world assessments were repeated at one-week and one-month.Abstract
Objectives
Methods
Unicompartmental and total knee arthroplasty (UKA and TKA) are successful treatments for osteoarthritis, but monolithic implants disrupt the natural homeostasis of bone which leads to bone loss over time. This can cause problems if the implant needs to be revised. This study aimed to demonstrate that tibial implants made from titanium lattice could replace the tibial condyle surface while minimising disruption of the bone's natural mechanical loading environment. A secondary aim was to determine whether implants perform better if they replicate more closely bone's mechanical modulus, anisotropy and spatial heterogeneity. This study was conducted in a human cadaveric model. In a cadaveric model, UKA and TKA procedures were performed on 8 fresh-frozen knee specimens by a board-certified consultant orthopaedic surgeon, using tibial implants made from conventional monolithic material and titanium lattice structures. Stress at the bone-implant interfaces was measured with pressure film and compared to the native knee.Abstract
Objectives
Methods
This study investigates the use of the Metabolic Equivalent of Task (MET) score in a hip arthroplasty population and its ability to capture additional benefit beyond the maximum Oxford Hip Score (OHS). OHS, EuroQol-5D index (EQ-5D), and the MET were prospectively recorded in 221 primary hip arthroplasty procedures pre-operatively and at 1-year. The distribution was examined reporting the presence of ceiling & floor effects. Validity was assessed correlating the MET with the other scores using Spearman's rank and determining responsiveness using the standardised response mean (SRM). A subgroup of 93 patients scoring 48/48 on the OHS were analysed by age group, sex, BMI and pre-operative MET using the other two metrics to determine if differences could be established despite all scoring identically on the OHS. 117 total hip and 104 hip resurfacing arthroplasty operations were included. Mean age was 59.4 ± 11.3. Post-operatively the OHS and EQ-5D demonstrate significant negatively skewed distributions with ceiling effects of 41% and 53%, respectively. The MET was normally distributed post-operatively with no ceiling effect. Weak-moderate but statistically significant correlations were found between the MET and the other two metrics both pre & post-operatively. Responsiveness was excellent, SRM for OHS: 2.01, EQ-5D: 1.06 and MET: 1.17. In the 48/48 scoring subgroup, no differences were found comparing groups with the EQ-5D, however significantly higher MET scores were demonstrated for patients aged <60 (12.7 vs 10.6, p=0.008), male patients (12.5 vs 10.8, p=0.024) and those with pre-operative MET scores >6 (12.6 vs 11.0, p=0.040). The MET is normally distributed in patients following hip arthroplasty, recording levels of activity which are undetectable using the OHS. As a simple, valid activity metric, it should be considered in addition to conventional PROMs in order to capture the entire benefit experienced following hip arthroplasty.
In the United Kingdom, over 1 million elective surgeries were cancelled due to COVID-19, resulting in over 1.9 million people now waiting more than 4 months for their procedure – 3x the number last year. To address this backlog, the healthcare service has been asked to develop locally-designed ‘COVID-light’ facilities. In our local system, 822 patients awaited orthopaedic surgery when elective surgery was permitted to resume. The phased return of service required a careful and pragmatic prioritisation of patients, to protect resources, patients, and healthcare workers. We aim to describe how the COVID-19 Algorithm for Resuming Elective Surgery (CARES) was used to consider 1) Which type of operation and patient should be prioritised? and 2) Which patients are safe to undergo surgery? The central tenets to this were patient safety, predicted efficacy of the surgery, and delivering compassionate care by considering biopsychosocial factors.Background
Aims
Previous studies have evidenced cement-in-cement techniques as reliable in revision arthroplasty. Commonly, the original cement mantle is reshaped, aiding accurate placement of the new stem. Ultrasonic devices selectively remove cement, preserve host bone, and have lower cortical perforation rates than other techniques. As far as the authors are aware, the impact of ultrasonic devices on final cement-in-cement bonds has not been investigated. This study assessed the impact of cement removal using the Orthosonics System for Cemented Arthroplasty Revision (OSCAR; Orthosonics) on final cement-in-cement bonds. A total of 24 specimens were manufactured by pouring cement (Simplex P Bone Cement; Stryker) into stainless steel moulds, with a central rod polished to Stryker Exeter V40 specifications. After cement curing, the rods were removed and eight specimens were allocated to each of three internal surface preparation groups: 1) burr; 2) OSCAR; and 3) no treatment. Internal holes were recemented, and each specimen was cut into 5 mm discs. Shear testing of discs was completed by a technician blinded to the original grouping, recording ultimate shear strengths. Scanning electron microscopy (SEM) was completed, inspecting surfaces of shear-tested specimens.Objectives
Methods
Numerous studies have evidenced cement-in-cement techniques as reliable in revision arthroplasty. The original cement mantle is commonly reshaped to aid accurate placement of the new stem. Ultrasonic devices selectively remove cement, preserve host bone and have lower cortical perforation rates than other techniques. As far as the authors are aware, their impact on final cement-cement bonds has not been investigated. This study assessed the impact of cement removal using OSCAR (Orthosonics System for Cemented Arthroplasty Revision, ORTHOSONICS) on final cement-cement bonds. Twenty-four specimens were manufactured by pouring cement (Simplex P Bone Cement, Stryker) into stainless-steel moulds with a central rod polished to Stryker Exeter V40 specifications. After cement curing, rods were removed and eight specimens allocated to each of three internal surface preparation groups: 1) burr; 2) OSCAR; or 3) no treatment. Internal holes were re-cemented, then each specimen was cut into 5mm discs. Shear testing of discs was completed by a technician blinded to original grouping (Instron 5567, UK), recording ultimate shear strengths. The mean shear strength for OSCAR-prepared specimens (17 MPa, 99% CI 14.9 to 18.6, SD=4.0) was significantly lower than that measured for the control (23 MPa, 99% CI 22.5 to 23.7, SD=1.4) and burr (23 MPa, 99% CI 22.1 to 23.7, SD=1.9) groups (P<0.001, one-way ANOVA with Tukey's post-hoc analysis). There was no significant difference between control and burr groups (P>0.05). Results show that cement removal technique impacts on final cement-cement bonds. This in vitro study shows a significantly weaker bond when using OSCAR prior to re-cementation into an old cement mantle, compared to cement prepared with a burr or no treatment. These results have implications for surgical practice and decision-making about specific cement removal techniques used during cement-in-cement revision arthroplasty, suggesting that the risks and benefits of ultrasonic cement removal need careful consideration.
Interbody fusion aims to treat painful disc disease by demobilising the spinal segment through the use of an interbody fusion device (IFD). Diminished contact area at the endplate interface raises the risk of device subsidence, particularly in osteoporosis patients. The aim of the study was to ascertain whether vertebral body (VB) cement augmentation would reduce IFD subsidence following dynamic loading. Twenty-four human two-vertebra motion segments (T6–T11) were implanted with an IFD and distributed into three groups; a control with no cement augmentation; a second with PMMA augmentation; and a third group with calcium phosphate (CP) cement augmentation. Dynamic cyclic compression was applied at 1Hz for 24 hours in a specimen specific manner. Subsidence magnitude was calculated from pre and post-test micro-CT scans. The inferior VB analysis showed significantly increased subsidence in the control group (5.0±3.7mm) over both PMMA (1.6±1.5mm, p=.034) and CP (1.0±1.1mm, p=.010) cohorts. Subsidence in the superior VB to the index level showed no significant differences (control 1.6±3.0mm, PMMA 2.1±1.5mm, CP 2.2±1.2mm, p=.811). In the control group, the majority of subsidence occurred in the lower VB with the upper VB displaying little or no subsidence, which reflects the weaker nature of the superior endplate. Subsidence was significantly reduced in the lower VB when both levels were reinforced regardless of cement type. Both PMMA and CP cement augmentation significantly affected IFD subsidence by increasing VB strength within the motion segment, indicating that this may be a useful method for widening indications for surgical interventions in osteoporotic patients.
Over 85% of patients with multiple myeloma (MM) have bone disease, mostly affecting thoraco-lumbar vertebrae. Vertebral fractures can lead to pain and large spinal deformities requiring application of vertebroplasty (PVP). PVP could be enhanced by use of Coblation technique to remove lesions from compromised MM vertebrae prior to cement injection (C-PVP). 28 cadaveric MM vertebrae, were initially fractured (IF) up to 75% of its original height on a testing machine, with rate of 1mm/min. Loading point was located at 25% of AP-diameter, from anterior. Two augmentation procedure groups were investigated: PVP and C-PVP. All vertebrae were augmented with 15% of PMMA cement. At the end of each injection the perceived injection force (PIF) was graded on a 5-point scale (1 very easy to 5 almost impossible). Augmented MM vertebrae were re-fractured, following the same protocol as for IF. Failure load (FL) was defined as 0.1% offset evaluated from load displacement curves.INTRODUCTION
METHODS
Unicompartmental Knee Replacement (UKR) is associated with fewer complications, faster recovery and better function than Total Knee Replacement (TKR). However, joint registries demonstrate a higher revision rate in UKR, limiting its use. Currently most UKRs are cemented and performed using a minimally invasive technique. In joint registries, common reasons for revision include aseptic loosening and pain. These problems could potentially be addressed by using cementless implants, which may provide more reliable fixation. The objectives of this study were to compare the quality of fixation (determined by the incidence and appearance of radiolucencies), and clinical outcomes of cemented and cementless UKR at five years. A randomised controlled trial was established with 63 knees (62 patients) randomised to either cemented (32 patients) or cementless UKR (30 patients). Fixation was assessed with fluoroscopic radiographs aligned to the bone-implant interface at one and five years. Outcome scores were collected pre-operatively and at one, two and five years, including Oxford Knee Score (OKS), American Knee Society Score, objective and functional (AKSS-O/F) and Tegner Activity Scale (TAS), expressed as absolute scores and 0–5 year change (δ) scores. Four patients died during the study period. There were no revisions. Mean operative time was 11 minutes shorter in the cementless group (p=0.029). At five years, there was no significant difference in any outcome measure except AKSS-F and δAKSS-F which were significantly better in the cementless group (both p=0.003). There were no femoral radiolucencies in either group. There were significantly more tibial radiolucencies in the cemented group (20/30 vs 2/27, p< 0.001). There were nine complete radiolucencies in the cemented group and none in the cementless group (p< 0.001). Cementless fixation provides improved fixation at five years compared to cemented fixation in UKR, maintaining equivalent or superior clinical outcomes with a shorter operative time and no increase in complications.
Indications for Unicompartmental Knee Arthroplasty (UKA) vary between units. Some authors have suggested, and many surgeons believe, that medial UKA should only be performed in patients who localise their pain to the medial joint line. This is despite research showing a poor correlation between patient-reported location of pain and radiological or operative findings in osteoarthritis. The aim of this study is to determine the effect of patient-reported pre-operative pain location and functional outcome of UKA at one and five years. Pre-operative pain location data were collected for 406 knees (380 patients) undergoing Oxford medial UKA. Oxford Knee Score, American Knee Society Scores and Tegner activity scale were recorded preoperatively and at follow-up. 272/406 (67%) had pure medial pain, 25/406 (6%) had pure anterior knee pain and 109/406 (27%) had mixed or generalised pain. None had pure lateral pain. The primary outcome interval is one year; 132/406 patients had attained five years by the time of analysis and their five year data is presented. At one and five years, each group had improved significantly by each measure (mean δOKS 15.6 (SD 8.9) at year one, 16.3 (9.3) at year five). There was no difference between the groups, nor between patients with and without anterior knee pain or isolated medial pain. We have found no correlation between preoperative pain location and outcome. We conclude that localised medial pain should not be a prerequisite to UKA and that it may be performed in patients with generalised or anterior knee pain.
Peri-prosthetic infections due to P. acnes may present as Prosthesis dysfunction without any obvious sepsis. We present our experience of efficient management of total knee prosthesis infection secondary to P. acnes which is one of the biggest case series. From 2008 to 2009, 9 patients diagnosed with P. acnes infection after knee arthroplasty were retrospectively reviewed and analysed for clinical diagnosis; laboratory data (ESR, CRP); Radiological Imaging; number of days for culture growth of P acnes; organism sensitivities; antibiotic regimen and length of treatment and surgical management. Infection was diagnosed by 2 positive cultures.Introduction
Materials and methods
Anterior Cruciate Ligament (ACL) injuries are increasing in prevalence amongst younger patients. Concerns exist as to the possibility of growth impairment due to transphyseal reconstruction techniques. However, due to the poor results of conservative treatment, reconstructive procedures have been employed to improve the outcome of these injuries. A growing body of evidence supports the safety of transphyseal reconstruction in older children. This study evaluates the safety and results of these techniques in younger patients. Between 1999 and 2006, 17 patients of Tanner stage 1 or 2 underwent unilateral transphyseal ACL ligament reconstruction, using ipsilateral, four-strand hamstring grafts. Patients were aged between 9.5–14.0 years (mean, 12.1 years), and were followed up for a minimum of two years and a mean of 44 months (range 25–100 months). Graft survival, functional outcome and complications were recorded. There was one graft failure after re-injury (6%). Of the remaining patients, all reported a good or excellent result and a normal IKDC score. Mean postoperative Lysholm score was 97.5 ± 2.6, mean Tegner activity scale was 8.1 ± 0.8 pre-injury, 4.2 ± 1.0 post-injury, and 7.9 ± 1.4 post-operatively. One patient had mild valgus deformity which caused no functional disturbance; otherwise examination was normal in all patients. There were no leg length discrepancies and KT1000 arthrometer measurements showed no significant difference between normal and operated legs. Based on the results of this series, transphyseal reconstruction appears to be a safe option for the treatment of anterior cruciate ligament injuries in the young child.