The preventive effects of bisphosphonates on articular cartilage in non-arthritic joints are unclear. This study aimed to investigate the effects of oral bisphosphonates on the rate of joint space narrowing in the non-arthritic hip. We retrospectively reviewed standing whole-leg radiographs from patients who underwent knee arthroplasties from 2012 to 2020 at our institute. Patients with previous hip surgery, Kellgren–Lawrence grade ≥ II hip osteoarthritis, hip dysplasia, or rheumatoid arthritis were excluded. The rate of hip joint space narrowing was measured in 398 patients (796 hips), and the effects of the use of bisphosphonates were examined using the multivariate regression model and the propensity score matching (1:2) model.Aims
Methods
Unicompartmental knee arthroplasty (UKA) is one surgical option for treating symptomatic medial osteoarthritis. Clinical studies have shown the functional benefits of UKA; however, the optimal alignment of the tibial component is still debated. The purpose of this study was to evaluate the effects of tibial coronal and sagittal plane alignment in UKA on knee kinematics and cruciate ligament tension, using a musculoskeletal computer simulation. The tibial component was first aligned perpendicular to the mechanical axis of the tibia, with a 7° posterior slope (basic model). Subsequently, coronal and sagittal plane alignments were changed in a simulation programme. Kinematics and cruciate ligament tensions were simulated during weight-bearing deep knee bend and gait motions. Translation was defined as the distance between the most medial and the most lateral femoral positions throughout the cycle.Objectives
Methods
Little biomechanical information is available about kinematically aligned (KA) total knee arthroplasty (TKA). The purpose of this study was to simulate the kinematics and kinetics after KA TKA and mechanically aligned (MA) TKA with four different limb alignments. Bone models were constructed from one volunteer (normal) and three patients with three different knee deformities (slight, moderate and severe varus). A dynamic musculoskeletal modelling system was used to analyse the kinematics and the tibiofemoral contact force. The contact stress on the tibial insert, and the stress to the resection surface and medial tibial cortex were examined by using finite element analysis.Objectives
Materials and Methods
Malrotation of the tibial component would lead to various complications after total knee arthroplasty (TKA) such as improper joint kinematics, patellofemoral instability, or excessive wear of polyethylene. However, despite reports of internal rotation of the tibial component being associated with more severe pain or stiffness than external rotation, the biomechanical reasons remain largely unknown. In this study, we used a musculoskeletal computer model to simulate a squat (0°–130°–0° flexion) and analyzed the effects of malrotated tibial component on lateral and medial collateral ligament (LCL and MCL) tensions, tibiofemoral and patellofemoral contact stresses, during the weight-bearing deep knee flexion. A musculoskeletal model, replicating the dynamic quadriceps-driven weight-bearing knee flexion in previous cadaver studies, was simulated with a posterior cruciate-retaining TKA. The model included tibiofemoral and patellofemoral contact, passive soft tissue and active muscle elements. The soft tissues were modeled as nonlinear springs using previously reported stiffness parameters, and the bony attachments were also scaled to some cadaver reports. The neutral rotational alignment of the femoral and tibial components was aligned according to the femoral epicondylar axis and the tibial anteroposterior axis, respectively. Knee kinematics and ligament tensions were computed during a squat for malrotated conditions of the tibial component. The tibial rotational alignments were changed from 15° external rotation to 15° internal rotation in 5° increments. The MCL and LCL tensions, the tibiofemoral and patellofemoral contact stresses were compared among the knees with different rotational alignment.Introduction
Materials and Methods
Kinematically aligned total knee arthroplasty (TKA) is of increasing interest because this method may improve patient satisfaction. However, the biomechanics of kinematically aligned TKA remain largely unknown. Therefore, we analyzed whether the kinematic alignment method cause to increase the contact force on patellofemoral and tibiofemoral joints. A musculoskeletal computer simulation was used to determine the effects of kinematically or mechanically aligned TKA. Patellofemoral and tibiofemoral contact forces were examined for a mechanically aligned model and a kinematically aligned model using finite element analysis.Objective
Methods
Total knee arthroplasty (TKA) is one of the most successful surgeries with respect to relieving pain and restoring function of the knee. However, some studies have reported that patients are not always satisfied with their results after TKA. The aim of this study was to determine which factors contribute to patient's satisfaction after TKA. We evaluated 69 patients who had undergone 76 primary TKAs between March 2012 and June 2013, and assessed patient- and physician- reported scores using the 2011 Knee Society Scoring System and clinical variables before and after TKAs. We determined the correlation between patient satisfaction and clinical variables.Purpose
Methods