Abstract
Introduction
Malrotation of the tibial component would lead to various complications after total knee arthroplasty (TKA) such as improper joint kinematics, patellofemoral instability, or excessive wear of polyethylene. However, despite reports of internal rotation of the tibial component being associated with more severe pain or stiffness than external rotation, the biomechanical reasons remain largely unknown. In this study, we used a musculoskeletal computer model to simulate a squat (0°–130°–0° flexion) and analyzed the effects of malrotated tibial component on lateral and medial collateral ligament (LCL and MCL) tensions, tibiofemoral and patellofemoral contact stresses, during the weight-bearing deep knee flexion.
Materials and Methods
A musculoskeletal model, replicating the dynamic quadriceps-driven weight-bearing knee flexion in previous cadaver studies, was simulated with a posterior cruciate-retaining TKA. The model included tibiofemoral and patellofemoral contact, passive soft tissue and active muscle elements. The soft tissues were modeled as nonlinear springs using previously reported stiffness parameters, and the bony attachments were also scaled to some cadaver reports. The neutral rotational alignment of the femoral and tibial components was aligned according to the femoral epicondylar axis and the tibial anteroposterior axis, respectively. Knee kinematics and ligament tensions were computed during a squat for malrotated conditions of the tibial component. The tibial rotational alignments were changed from 15° external rotation to 15° internal rotation in 5° increments. The MCL and LCL tensions, the tibiofemoral and patellofemoral contact stresses were compared among the knees with different rotational alignment.
Results
For the MCL, the neutral rotated tibial components caused a maximum tension of 67.3 N. However, the 15° internally rotated tibial components increased tensions to 285.2N as a maximum tension [Fig.1]. By contrast, with external rotation of the tibial component, the MCL tensions increased only a small amount. The LCL tension also increased but up to less than half of the MCL value [Fig.2]. The tibiofemoral and patellofemoral contact stresses increased because of a decreased contact area [Fig.3].
Discussion and Conclusion: In this computer simulation, excessive internal rotation in the tibial component increased MCL tensions and patellofemoral and tibiofemoral contact stresses. The current study suggests that increased MCL tensions and patellofemoral and tibiofemoral contact stresses caused by a malrotated tibial component could be one cause of patient complaints and polyethylene problems after TKA.