header advert
Results 1 - 6 of 6
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 34 - 34
1 Feb 2020
Slater N Justin D Su E Pearle A Schumacher B
Full Access

Traditional procedures for orthopedic total joint replacements have relied upon bone cement to achieve long-term implant fixation. This remains the gold standard in number of procedures including TKR and PKR. In many cases however, implants fixed with cement have proven susceptible to aseptic loosening and 3rd body wear concerns. These issues have led to a shift away from cement fixation and towards devices that rely on the natural osteoconductive properties of bone and the ability of porous-coated implants to initiate on-growth and in-growth at the bone interface, leading to more reliable fixation.

To facilitate long-term fixation through osseointegration, several mechanical means have been utilized as supplemental mechanism to aid in stabilizing the prostheses. These methods have included integrated keels and bone screws. The intent of these components is to limit implant movement and provide a stable environment for bone ingrowth to occur. Both methods have demonstrated limitations on safety and performance including bone fracture due keel induced stresses, loosening due to inconsistent pressfit of the keel, screw-thread stripping in cancellous bone, head-stripping, screw fracture, screw loosening, and screw pullout. An alternative method of fixation utilizing blade-based anchoring has been developed to overcome these limitations.

The bladed-based fixation concept consists of a titanium alloy anchor with a “T-shaped” cross-section and sharped-leading end that can be impacted directly into bone. The profile is configured to have a bladed region on the horizontal crossbar of the “T” for engagement into bone and a solid rail at the other end to mates with a conforming slot on the primary body of the prosthesis. A biased chisel tip is added to the surface of the leading blade edge to draw the bone between the anchor's horizontal surface and surface of the implant, thus generating a compressive force at the bone-to-prothesis interface. The anchoring mechanism has been successfully been integrated into the tibial tray component of a partial knee replacement; an implant component that has a clinical history of revision due to loosening.

A detailed investigation into the pulloff strength, wear debris generation, compressive-force properties, and susceptibility to tibial bone fracture was carried out on the anchor technology when integrated in a standard tibial tray of a partial knee replacement. When tested in rigid polyurethane bone foam (Sawbones, Grade 15) the pulloff strength of the construct increased by 360% when utilizing the anchor. The tibial tray and anchor construct were cycled under compressive loading and demonstrated no evidence of interface corrosion or wear debris generation after 1 million cycles. In addition, the anchor mechanism was shown to generate 340N of compressive force at the tibial tray-to-bone interface when evaluated with pressure sensitive film (Fuji Prescale, Medium Grade). Finally, the ultimate compressive load to induce tibial fracture was shown to increase by 17% for the anchored tray as compared to a traditional keeled tray when tested in an anatomic tibial sawbones model; and by 19% when evaluated in human cadaveric tibias.

For any figures or tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 97 - 97
1 Apr 2019
Justin D Nguyen YS Walsh W Pelletier M Friedrich CR Baker E Jin SH Pratt C
Full Access

Recent clinical data suggest improvement in the fixation of tibia trays for total knee arthroplasty when the trays are additive manufactured with highly porous bone ingrowth structures. Currently, press-fit TKA is less common than press-fit THA. This is partly because the loads on the relatively flat, porous, bony apposition area of a tibial tray are more demanding than those same porous materials surrounding a hip stem. Even the most advanced additive manufactured (AM) highly porous structures have bone ingrowth limitations clinically as aseptic loosening still remains more common in press-fit TKA vs. THA implants.

Osseointegration and antibacterial properties have been shown in vitro and in vivo to improve when implants have modified surfaces that have biomimetic nanostructures designed to mimic and interact with biological structures on the nano-scale. Pre-clinical evaluations show that TiO2 nanotubes (TNT), produced by anodization, on Ti6Al4V surfaces positively enhance the rate at which osseointegration occurs and TNT nano-texturization enhances the antibacterial properties of the implant surface.2

In this in vivo sheep study, identical Direct Metal laser Sintered (DMLS) highly porous Ti6Al4V specimens with and without TNT surface treatment are compared to sintered bead specimens with plasma sprayed hydroxyapatite-coated surface treatment. Identical DMLS specimens made from CoCrMo were also implanted in sheep tibia bi-cortically (3 per tibia) and in the cancellous bone of the distal femur and proximal tibia (1 per site). Animals were injected with fluorochrome labels at weeks 1, 2 and 3 after surgery to assess the rate of bone integration. The cortical specimens were mechanically tested and processed for PMMA histology and histomorphometry after 4 or 12 weeks. The cancellous samples were also processed for PMMA histology and histomorphometry. The three types of bone labels were visualized under UV light to examine the rate of new bony integration.

At 4 weeks, a 42% increase in average pull-out shear strength between nanotube treated specimens and non-nanotube treated specimens was shown. A 21% increase in average pull-out shear strength between nanotube treated specimens and hydroxyapatite-coated specimens was shown. At 12 weeks, all specimens had statistically similar pull-out values. Bone labels demonstrated new bone formation into the porous domains on the materials as early as 2 weeks.

A separate in vivo study on 8 rabbits infected with methicillin-resistant Staphylococcus aureus showed bacterial colonization reduction on the surface of the implants treated with TNT. In vitro and in vivo evidence suggests that nanoscale surfaces have an antibacterial effect due to surface energy changes that reduce the ability of bacteria to adhere.

These in vivo studies show that TNT on highly porous AM specimens made from Ti6Al4V enhances new bone integration and also reduce microbial attachment.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 43 - 43
1 Apr 2019
Friedrich CR Baker E Bhosle S Justin D
Full Access

Periprosthetic infection remains a clinical challenge that may lead to revision surgeries, increased spending, disability, and mortality. The cost for treating hip and knee total joint infections is anticipated to be $1.62 billion by 2020. There is a need for implant surface modifications that simultaneously resist bacterial biofilm formation and adhesion, while promoting periprosthetic bone formation and osseointegration.

In vitro research has shown that nanotextured titanium promotes osteoblast differentiation, and upregulates metabolic markers of osteoblast activity and osteoblast proliferation. In vivo rat studies confirmed increased bone-implant contact area, enhanced de novo bone formation on and adjacent to the implant, and higher pull-out forces compared to non-textured titanium. The authors have advanced a benign electrochemical anodization process based on ammonium fluoride that creates a nanotube surface in as little as 10 minutes (Fig. 1), which can also integrate antibacterial nanosilver (Fig. 2).

The work reported here summarizes in vitro post-inoculation and in vivo post-implantation studies, showing inherent inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by titanium surfaces with nanotubes (TiNT), nanotubes with nanosilver (TiNT+Ag), plain (Ti), and thermal plasma sprayed (TPS) titanium. Ti6Al4V was the base material for all surfaces. In vitro studies evaluated Ti, TPS, four TiNT groups with varying nanotube diameters (60nm, 80nm, 110nm, 150nm), and TiNT+Ag. After seeding with MRSA (105, 106, and 108 CFU/mL), the 110nm diameter nanotubes showed MRSA inhibition up to three-orders of magnitude lower than the Ti and TPS surfaces at 2, 6, and 48 hours.

Following on the in vitro results, New Zealand White rabbits underwent a bilateral implantation of intramedullary tibial implants of the four material groups (4 mm outside diameter; 110nm NT diameter on TiNT and TiNT+Ag implants). One intramedullary canal was inoculated with clinically-derived MRSA (105 CFU in broth) at the time of implantation; one canal had only culture media introduced (control). At a 2-week endpoint, limbs were harvested for analysis, including implant sonication with sonicant bacterial cultured, histology, and microcomputed chromatography. In the sonicant analysis cohort, TPS showed the lowest average MRSA count, while TiNT and TiNT+Ag were the highest. There was one sample each of TPS, TiNT and TiNT+Ag that showed no MRSA. After an additional 24-hour implant incubation, the TiNT and TiNT+Ag samples had no bacteria, but the TPS grew bacteria; therefore, the authors hypothesize that MRSA more readily releases from the TiNT and TiNT+Ag implants during sonication, indicating weaker biofilm adhesion and development. Histologic analysis is currently underway. In a therapeutic experiment, rabbits underwent bilateral implantation, followed by 1 week of infection development, and then 1 week of vancomycin treatment. At the endpoint, implants were sonicated and bacteria was quantified from the sonicant. TiNT showed viable MRSA at only 30% that of TPS-coated levels, while TiNT+Ag implants showed viable MRSA at only 5% that of TPS-coated levels (Fig. 3). These early results indicate that the TiNT and TiNT+Ag surfaces have some inherent antibacterial activity against MRSA, which may increase the efficacy of systemic antibiotic treatments in the setting of periprosthetic joint infections.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 5 - 5
1 Apr 2018
Justin D Friedrich C Bhosle S Baker E Jin S Pratt C
Full Access

Titanium knee, shoulder and hip implants are typically grit-blasted, thermal plasma spray coated, or sintered to provide ingrowth surface features having texture with pore sizes on the order of hundreds of micrometers. This provides macro and micro-mechanical locking upon bone remodeling. However, at the nanoscale and cellular level, these surfaces appear smooth. In vitro and in vivo research shows surfaces with nanoscale features result in enhanced osseointegration, greater bone-implant contact area and pullout force, and the potential to be bactericidal via a simple hybrid anodization surface modification process. Prior processes for creating nanotube nano-textured surfaces via electrochemical anodization relied on hydrofluoric acid electrolyte and platinum cathodes. This novel process uses ammonium fluoride electrolytes and graphite cathodes which are more cost effective and easier to handle during processing. Hybrid electrolytes with differing concentrations of ethylene glycol, water, and ammonium fluoride provide a variety of nanotube morphologies and sizes. Nano-tubular surfaces on knee tibial and femoral implants, hip stems and acetabular cups, bone screws and other 3D printed parts have been enhanced by this method of nano-texturing in as little as 30 minutes.

In vivo work in a Sprague Dawley rat model showed bone-implant contact area up to 2.9-times greater, and uniaxial pullout forces up to 6.9-times greater, than implanted smooth titanium controls at 4 and 12-week time points. In these tests, 1.25mm Kirschner wires were implanted in the rat femora to simulate an intramedullary nail. Histomorphometry in the mid-shaft and distal regions showed greater trabecular thickness and bone tissue mineral density than controls. Axial pullout tests often resulted in bone failure before the bone-implant interface.

In vitro evidence suggests that nanoscale surfaces may have an antibacterial effect due to surface energy changes that reduce the ability of bacteria to adhere. However, it is recognized that silver is highly antibacterial in appropriate concentrations. It is also recognized that nanosilver, approximately 10–20nm, is especially effective. Ammonium fluoride anodization is modified using a hybrid electrolyte that includes silver fluoride. By substituting some of the ammonium fluoride with silver fluoride, to maintain a constant total fluorine mass, nanosilver is integrated within and among the nanotubes in the same single process that forms the nanotubes.

This hybrid process in nano-texturing titanium implants can be integrated into current manufacturing production at low cost.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 38 - 38
1 Feb 2017
Justin D Pratt C Jin S Shivaram A Bose S Bandyopadhyay A
Full Access

Introduction

Titanium (Ti) alloys are used as porous bone ingrowth materials on non-cemented knee arthroplasty tibial tray implants. Nano-surface mechanism that increase the osseointegration rate between Ti alloys, and surrounding tissue has been recognized to improve the interface to ultimately allow patients to weight bear on non-cemented arthroplasty implants sooner. Bioactive TiO2 nanotube arrays has been shown to accelerate osseointegration. Ideally, these surfaces would both increase the adhesion of bone to the implant and help to reduction of infection to substitute for antibiotic bone cement. This study examines a combination treatment of both TiO2 nanotubes combined with silver nano-deposition, that simultaneously enhances osseointegration while improving infection resistance, by testing ex vivo implantation stability in an equine cadaver bone followed by in vitro and in vivo analysis to understand the biocompatibility and early stage osseointegration.

Methods

100nm diameter and 300nm length TiO2 nanotubes were formed on a CP titanium surface using anodization method at 20V for 45mins using 1% HF electrolyte. Silver deposition on TiO2 nanotubes were performed using 0.1M AgNO3 solution at 3V for 45s. Figure 1 shows SEM images showing (a) TiO2 nanotubes of 300nm length and (b) nanotubes with silver coating). Ti anodized samples with and without silver nanotubes implanted into an equine cadaver bone in an ex vivo manner to study the stability of nanotubes and the adherence of silver deposition. Silver release study was performed for a period of 14 days in a similar ex vivo manner. Dimensions for implantation samples: 2.5 mm diam. × 15 mm. For cell culture, circular disc samples 12.5mm in diameter and 3 mm in thickness were used to study the bone cell-material interactions using human fetal osteoblast (hFOB) cells. To evaluate the cell proliferation, MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) assay was used. The in vitro cell-materials interaction study was performed for a period of 4 and 7 days. In vivo study was performed using rat distal femur model for a period of 12 weeks with dense Ti samples as control (Sample dimensions: 3mm diam. × 5mm). At the end of 12 weeks, the samples were analyzed for early stage osseointegration using histological analysis and SEM imaging.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 71 - 71
1 May 2016
Justin D Jin S Frandsen C Brammer K Bjursten L Oh S Pratt C
Full Access

Introduction

Recent advances in nano-surface modification technologies are improving osseointegration response between implant materials and surrounding tissue. Living cells have been shown to sense and respond to cues on the nanoscale which in turn direct stem cell differentiation. One commercially practical surface treatment technique of particular promise is the modification of titanium implant surfaces via electrochemical anodization to form arrays of vertically aligned, laterally spaced titanium oxide (TiO2) nanotubes on areas of implants where enhanced implant–to-bone fixation is desired. Foundational work has demonstrated that the TiO2 nanotube surface architecture significantly accelerates osteoblast cell growth, improves bone-forming functionality, and even directs mesenchymal stem cell fate. The initial in vitro osteoblast cell response to such TiO2 nanotube surface treatments and corresponding in vivo rabbit tissue response are evaluated.

Methods

Arrays of 30, 50, 70, 100nm diameter TiO2 nanotubes formed onto titanium surfaces were compared to grit blasted titanium controls in vitro (Figure 1). SEM micrographs of bovine cartilage chondrocytes (BCCs) on the nanotube surfaces were evaluated after 2 hours, 24 hours, and 5 days of culture. Additionally 20 samples each of various nanotube diameters and the non-nanotube treated titanium controls were evaluated after exposure to human mesenchymal stem cell (hMSC) after 2 hours and 24 hours.

The left tibia and right tibia of four rabbits were implanted with disk shaped titanium implants (5.0 mm dia. × 1.5 mm) with and without TiO2 nanotubes. The front side of each implant faced the rabbit tibia bone and the back side of the implant had screw holes for post-in vivo tensile testing. After 4 weeks, the bones with implants were retrieved for mechanical testing and histology analysis.

Comparative osteogenic behavior on metal oxide nanotube surfaces applied to other implant material surface chemistries including ZrO2, Ta, and Ta2O5 were also evaluated along with TiO2 nanotubes formed on a thin films of titanium on the surface of zirconia and CoCr alloy orthopedic implants.