Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Content I can access

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 172 - 172
1 Jan 2013
Tan H Jones E Henshaw K McGonagle D Giannoudis P
Full Access

Objective

The aim of this study was to investigate PDGF release in the peripheral circulation following trauma and to correlate it with the numbers of MSCs in iliac crest bone marrow (BM) aspirate.

Methods

Trauma patients with lower extremity fractures (n=18, age 21–64 years) were recruited prospectively. Peripheral blood was obtained on admission, and at 1, 3, 5 and 7 days following admission. The serum was collected and PDGF was measured using ELISA. Iliac crest (BM) aspirate (20ml) was obtained on days 0–9 following admission. MSCs were enumerated using standard colony-forming unit fibroblasts (CFU-F) assay.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 8 - 8
1 Aug 2012
Tan H Jones E Kozera L Henshaw K McGonagle D Giannoudis P
Full Access

Background and objectives

Fracture healing represents a physiological process regulated by a variety of signalling molecules, growth factors and osteogenic progenitor cells. Bone healing following trauma is associated with increased serum concentrations of several pro-inflammatory and angiogenic growth factors1. Platelet-derived growth factor (PDGF) has been shown to stimulate mesenchymal stem cell (MSC) proliferation in vitro. However, the in vivo relationship between the levels of PDGF and the numbers of MSCs in humans has not yet been explored. The aim of this study was to investigate PDGF release in the peripheral circulation following trauma and to correlate it with the numbers of MSCs in iliac crest bone marrow (BM) aspirate and in peripheral blood.

Methods

Trauma patients with lower extremity fractures (n=12, age 18-63 years) were recruited prospectively. Peripheral blood was obtained on admission, and at 1, 3, 5 and 7 days following admission. The serum was collected and PDGF was measured using the enzyme-linked immuno-sorbent assay (ELISA) technique. Iliac crest (BM) aspirate (20ml) and peripheral blood (PB) (20ml) was obtained on days 0-9 following admission. MSCs were enumerated using standard colony-forming unit fibroblasts (CFU-F) assay.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_III | Pages 308 - 308
1 Jul 2011
Pountos I Georgouli T Henshaw K Corscaden D Giannoudis P
Full Access

Background: It has been previously shown that in elderly patients with osteoporosis the Mesenchymal Stem Cell (MSC) growth rate and osteogenic potential is decreased. The aim of this study was to elucidate the effect of BMP-2, BMP-7, PTH and PDGF on MSC’s capacity to proliferate and differentiate.

Methods: Cancellous bone samples were obtained from 10 patients (mean age 76 (70–84), (4 males)) suffering from lower extremity fractures and osteoporosis. Mes-enchymal Stem Cells (MSCs) were isolated by enzymatic digestion. Cells were cultured till passage 3 (P3). Functional assays on proliferation and osteogenic differentiation were performed under the influence of a wide range of BMP-2, BMP-7, PTH and PDGF concentrations. Proliferation was assessed using CFU-F and XTT assays. Osteogenic differentiation was assessed by alkaline phosphatase activity and total calcium production.

Results: MSC proliferation was found upregulated by medium supplementation with BMP-7 and PDGF. The highest proliferation rate increase was achieved with 100 ng/ml of BMP-7. BMP-2 and PTH did not affect MSC proliferation. All four molecules upregulated ALP activity and calcium production by growing osteoblasts. A dose dependant effect was noted. BMP-2 and BMP-7 in their highest studied concentration (100 ng/ml) produced a ~ three-fold increase on osteogenic potential of MSCs.

Conclusion: This study indicates that BMP-7 and BMP-2 have favourable effect on osteogenic differentiation of MSCs. However, BMP-7 could be more advantageous as it enhances both proliferation and osteogenic differentiation of MSCs derived from elderly osteoporotic bone.