Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

The systemic stimulation of mesenchymal stem cells (MSCS) in bone marrow in response to trauma

British Orthopaedic Association 2012 Annual Congress



Abstract

Objective

The aim of this study was to investigate PDGF release in the peripheral circulation following trauma and to correlate it with the numbers of MSCs in iliac crest bone marrow (BM) aspirate.

Methods

Trauma patients with lower extremity fractures (n=18, age 21–64 years) were recruited prospectively. Peripheral blood was obtained on admission, and at 1, 3, 5 and 7 days following admission. The serum was collected and PDGF was measured using ELISA. Iliac crest (BM) aspirate (20ml) was obtained on days 0–9 following admission. MSCs were enumerated using standard colony-forming unit fibroblasts (CFU-F) assay.

Results

We observed a gradual increase in serum PDGF levels following fracture (r2=0.79, p=0.005, n=18), which reached up to 4-fold on day 7. In 12 out of 18 patients recruited for CFU-F study, an increase in iliac crest BM CFU-F/ml of aspirate was observed, reaching an average 10-fold post-fracture (range days 3 to day 9). In 15 patients, for which PDGF and CFU-F were measured in parallel, a strong positive correlation was observed between CFU-F numbers per millilitre of BM aspirate and circulating PDGF levels (r=0.55, p< 0.05).

Discussion and conclusion

Our data demonstrate, for the first time, that BM MSC pool in humans is not static and can be stimulated following trauma. This is not a result of mobilisation of MSCs into systemic circulation. Rather, MSC activation at remote sites, like iliac crest BM, can be due to systemic up-regulation of several cytokines and growth factors, including PDGF, in peripheral circulation. This data therefore enable a more comprehensive understanding of MSC dynamics in response to trauma and can inform the design of a clinical trial aimed to optimise the location and timing of BM harvest for use in bone regeneration following fracture.